Skip to main content

Python package for signal reconstruction.

Project description

https://img.shields.io/badge/License-BSD%203--Clause-blue.svg https://travis-ci.com/mikgroup/sigpy.svg?branch=master Documentation Status https://codecov.io/gh/mikgroup/sigpy/branch/master/graph/badge.svg https://zenodo.org/badge/139635485.svg

Source Code | Documentation | MRI Recon Tutorial | MRI Pulse Design Tutorial

SigPy is a package for signal processing, with emphasis on iterative methods. It is built to operate directly on NumPy arrays on CPU and CuPy arrays on GPU. SigPy also provides several domain-specific submodules: sigpy.plot for multi-dimensional array plotting, sigpy.mri for MRI reconstruction, and sigpy.mri.rf for MRI pulse design.

Installation

SigPy requires Python version >= 3.5. The core module depends on numba, numpy, PyWavelets, scipy, and tqdm.

Additional features can be unlocked by installing the appropriate packages. To enable the plotting functions, you will need to install matplotlib. To enable CUDA support, you will need to install cupy. And to enable MPI support, you will need to install mpi4py.

Via conda

We recommend installing SigPy through conda:

conda install -c frankong sigpy
# (optional for plot support) conda install matplotlib
# (optional for CUDA support) conda install cupy
# (optional for MPI support) conda install mpi4py

Via pip

SigPy can also be installed through pip:

pip install sigpy
# (optional for plot support) pip install matplotlib
# (optional for CUDA support) pip install cupy
# (optional for MPI support) pip install mpi4py

Installation for Developers

If you want to contribute to the SigPy source code, we recommend you install it with pip in editable mode:

cd /path/to/sigpy
pip install -e .

To run tests and contribute, we recommend installing the following packages:

pip install coverage ruff sphinx sphinx_rtd_theme black isort

and run the script run_tests.sh.

Features

CPU/GPU Signal Processing Functions

SigPy provides signal processing functions with a unified CPU/GPU interface. For example, the same code can perform a CPU or GPU convolution on the input array device:

# CPU convolve
x = numpy.array([1, 2, 3, 4, 5])
y = numpy.array([1, 1, 1])
z = sigpy.convolve(x, y)

# GPU convolve
x = cupy.array([1, 2, 3, 4, 5])
y = cupy.array([1, 1, 1])
z = sigpy.convolve(x, y)

Iterative Algorithms

SigPy also provides convenient abstractions and classes for iterative algorithms. A compressed sensing experiment can be implemented in four lines using SigPy:

# Given some observation vector y, and measurement matrix mat
A = sigpy.linop.MatMul([n, 1], mat)  # define forward linear operator
proxg = sigpy.prox.L1Reg([n, 1], lamda=0.001)  # define proximal operator
x_hat = sigpy.app.LinearLeastSquares(A, y, proxg=proxg).run()  # run iterative algorithm

PyTorch Interoperability

Want to do machine learning without giving up signal processing? SigPy has convenient functions to convert arrays and linear operators into PyTorch Tensors and Functions. For example, given a cupy array x, and a Linop A, we can convert them to Pytorch:

x_torch = sigpy.to_pytorch(x)
A_torch = sigpy.to_pytorch_function(A)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sigpy-0.1.26.tar.gz (376.6 kB view details)

Uploaded Source

Built Distribution

sigpy-0.1.26-py3-none-any.whl (108.6 kB view details)

Uploaded Python 3

File details

Details for the file sigpy-0.1.26.tar.gz.

File metadata

  • Download URL: sigpy-0.1.26.tar.gz
  • Upload date:
  • Size: 376.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.12

File hashes

Hashes for sigpy-0.1.26.tar.gz
Algorithm Hash digest
SHA256 37fdc159129b6a18b44d6bee43106561d1b031343660c4168f362a91f1b49367
MD5 cf486efd5e16d8fcfb1c8fb1af9381c7
BLAKE2b-256 64b96d5c4ecfcc1aaddb1c0cd3c68b5435e2dea25334cbcb245eb005a9e4774b

See more details on using hashes here.

File details

Details for the file sigpy-0.1.26-py3-none-any.whl.

File metadata

  • Download URL: sigpy-0.1.26-py3-none-any.whl
  • Upload date:
  • Size: 108.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.12

File hashes

Hashes for sigpy-0.1.26-py3-none-any.whl
Algorithm Hash digest
SHA256 f53caa6f622f47c8af0ae7b0c0164e64042125ce6e851ec07ae4a1523cb18018
MD5 6cf0790134787cccf9a67904241186d0
BLAKE2b-256 c083995ed11b6261e7a97719162ed6c3a79feb2a8ce51bdd32e7785d8ce13a36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page