Skip to main content

A light fork of sigpy, a signal processing library for Python.

Project description

NOTE: This is a fork of the repository below. Changes have been made to lighten it’s dependency on Numba and PyWavelets. If you are using a function that used Numba either install with the [full] extra or expect much slower results.

SigPy

https://img.shields.io/badge/License-BSD%203--Clause-blue.svg https://travis-ci.com/mikgroup/sigpy.svg?branch=master Documentation Status https://codecov.io/gh/mikgroup/sigpy/branch/master/graph/badge.svg https://zenodo.org/badge/139635485.svg

Source Code | Documentation | MRI Recon Tutorial | MRI Pulse Design Tutorial

SigPy is a package for signal processing, with emphasis on iterative methods. It is built to operate directly on NumPy arrays on CPU and CuPy arrays on GPU. SigPy also provides several domain-specific submodules: sigpy.plot for multi-dimensional array plotting, sigpy.mri for MRI reconstruction, and sigpy.mri.rf for MRI pulse design.

Installation

SigPy requires Python version >= 3.5. The core module depends on numba, numpy, PyWavelets, scipy, and tqdm.

Additional features can be unlocked by installing the appropriate packages. To enable the plotting functions, you will need to install matplotlib. To enable CUDA support, you will need to install cupy. And to enable MPI support, you will need to install mpi4py.

Via conda

We recommend installing SigPy through conda:

conda install -c frankong sigpy
# (optional for plot support) conda install matplotlib
# (optional for CUDA support) conda install cupy
# (optional for MPI support) conda install mpi4py

Via pip

SigPy can also be installed through pip:

pip install sigpy
# (optional for plot support) pip install matplotlib
# (optional for CUDA support) pip install cupy
# (optional for MPI support) pip install mpi4py

Installation for Developers

If you want to contribute to the SigPy source code, we recommend you install it with pip in editable mode:

cd /path/to/sigpy
pip install -e .

To run tests and contribute, we recommend installing the following packages:

pip install coverage ruff sphinx sphinx_rtd_theme black isort

and run the script run_tests.sh.

Features

CPU/GPU Signal Processing Functions

SigPy provides signal processing functions with a unified CPU/GPU interface. For example, the same code can perform a CPU or GPU convolution on the input array device:

# CPU convolve
x = numpy.array([1, 2, 3, 4, 5])
y = numpy.array([1, 1, 1])
z = sigpy.convolve(x, y)

# GPU convolve
x = cupy.array([1, 2, 3, 4, 5])
y = cupy.array([1, 1, 1])
z = sigpy.convolve(x, y)

Iterative Algorithms

SigPy also provides convenient abstractions and classes for iterative algorithms. A compressed sensing experiment can be implemented in four lines using SigPy:

# Given some observation vector y, and measurement matrix mat
A = sigpy.linop.MatMul([n, 1], mat)  # define forward linear operator
proxg = sigpy.prox.L1Reg([n, 1], lamda=0.001)  # define proximal operator
x_hat = sigpy.app.LinearLeastSquares(A, y, proxg=proxg).run()  # run iterative algorithm

PyTorch Interoperability

Want to do machine learning without giving up signal processing? SigPy has convenient functions to convert arrays and linear operators into PyTorch Tensors and Functions. For example, given a cupy array x, and a Linop A, we can convert them to Pytorch:

x_torch = sigpy.to_pytorch(x)
A_torch = sigpy.to_pytorch_function(A)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sigpy-lite-0.1.26.tar.gz (381.1 kB view details)

Uploaded Source

Built Distribution

sigpy_lite-0.1.26-py3-none-any.whl (109.1 kB view details)

Uploaded Python 3

File details

Details for the file sigpy-lite-0.1.26.tar.gz.

File metadata

  • Download URL: sigpy-lite-0.1.26.tar.gz
  • Upload date:
  • Size: 381.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for sigpy-lite-0.1.26.tar.gz
Algorithm Hash digest
SHA256 4a532a33ebaef7cbb1a9089f24b6976ae4f8fb12790ffe7aba47015cd0afbc88
MD5 d00257c583c811aeb822c3645a00c37d
BLAKE2b-256 c83d48cf227e99724abad9eea69939b965c548ec4176496b3b3558f3653ccf44

See more details on using hashes here.

File details

Details for the file sigpy_lite-0.1.26-py3-none-any.whl.

File metadata

  • Download URL: sigpy_lite-0.1.26-py3-none-any.whl
  • Upload date:
  • Size: 109.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for sigpy_lite-0.1.26-py3-none-any.whl
Algorithm Hash digest
SHA256 62fa81d4c86b7470f3a2c8f065b76dd9b5b40318e18453c7d6fac05870534cdf
MD5 c6fc01756b65dc036ad8821a695bde33
BLAKE2b-256 6fc8466c32b34c56002b8d597465f3f33b6c66680a99ee1068d88a6ec9746aa8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page