Skip to main content

Silero Models: pre-trained enterprise-grade STT / TTS models and benchmarks.

Project description

Mailing list : test Mailing list : test License: CC BY-NC 4.0

Donations Backers Sponsors

Build and Deploy to PyPI PyPI version

header

Silero Models

Silero Models: pre-trained enterprise-grade STT / TTS models and benchmarks.

Enterprise-grade STT made refreshingly simple (seriously, see benchmarks). We provide quality comparable to Google's STT (and sometimes even better) and we are not Google.

As a bonus:

  • No Kaldi;
  • No compilation;
  • No 20-step instructions;

Also we have published TTS models that satisfy the following criteria:

  • One-line usage;
  • A large library of voices;
  • A fully end-to-end pipeline;
  • Naturally sounding speech;
  • No GPU or training required;
  • Minimalism and lack of dependencies;
  • Faster than real-time on one CPU thread (!!!);
  • Support for 16kHz and 8kHz out of the box;

Also we have published a model for text repunctuation and recapitalization that:

  • Inserts capital letters and basic punctuation marks (dot, comma, hyphen, question mark, exclamation mark, dash for Russian);
  • Works for 4 languages (Russian, English, German, Spanish) and can be extended;
  • By design is domain agnostic and is not based on any hard-coded rules;
  • Has non-trivial metrics and succeeds in the task of improving text readability;

Installation and Basics

You can basically use our models in 3 flavours:

  • Via PyTorch Hub: torch.hub.load();
  • Via pip: pip install silero and then import silero;
  • Via caching the required models and utils manually and modifying if necessary;

Models are downloaded on demand both by pip and PyTorch Hub. If you need caching, do it manually or via invoking a necessary model once (it will be downloaded to a cache folder). Please see these docs for more information.

PyTorch Hub and pip package are based on the same code. Hence all examples, historically based on torch.hub.load can be used with a pip-package via this basic change:

# before
torch.hub.load(repo_or_dir='snakers4/silero-models',
               model='silero_stt',  # or silero_tts or silero_te
               **kwargs)

# after
from silero import silero_stt, silero_tts, silero_te
silero_stt(**kwargs)

Speech-To-Text

All of the provided models are listed in the models.yml file. Any meta-data and newer versions will be added there.

Screenshot_1

Currently we provide the following checkpoints:

PyTorch ONNX Quantization Quality Colab
English (en_v6) :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: link Open In Colab
English (en_v5) :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: link Open In Colab
German (de_v4) :heavy_check_mark: :heavy_check_mark: :hourglass: link Open In Colab
English (en_v3) :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: link Open In Colab
German (de_v3) :heavy_check_mark: :hourglass: :hourglass: link Open In Colab
German (de_v1) :heavy_check_mark: :heavy_check_mark: :hourglass: link Open In Colab
Spanish (es_v1) :heavy_check_mark: :heavy_check_mark: :hourglass: link Open In Colab
Ukrainian (ua_v3) :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A Open In Colab

Model flavours:

jit jit jit jit jit_q jit_q onnx onnx onnx onnx
xsmall small large xlarge xsmall small xsmall small large xlarge
English en_v6 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
English en_v5 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
English en_v4_0 :heavy_check_mark: :heavy_check_mark:
English en_v3 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
German de_v4 :heavy_check_mark: :heavy_check_mark:
German de_v3 :heavy_check_mark:
German de_v1 :heavy_check_mark: :heavy_check_mark:
Spanish es_v1 :heavy_check_mark: :heavy_check_mark:
Ukrainian ua_v3 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

Dependencies

  • All examples:
    • torch, 1.8+ (used to clone the repo in tf and onnx examples), breaking changes for version older than 1.6
    • torchaudio, latest version bound to PyTorch should work
    • omegaconf, latest just should work
  • Additional for ONNX examples:
    • onnx, latest just should work
    • onnxruntime, latest just should work
  • Additional for TensorFlow examples:
    • tensorflow, latest just should work
    • tensorflow_hub, latest just should work

Please see the provided Colab for details for each example below. All examples are maintained to work with the latest major packaged versions of the installed libraries.

PyTorch

Open In Colab

Open on Torch Hub

import torch
import zipfile
import torchaudio
from glob import glob

device = torch.device('cpu')  # gpu also works, but our models are fast enough for CPU
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
                                       model='silero_stt',
                                       language='en', # also available 'de', 'es'
                                       device=device)
(read_batch, split_into_batches,
 read_audio, prepare_model_input) = utils  # see function signature for details

# download a single file, any format compatible with TorchAudio
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav',
                               dst ='speech_orig.wav', progress=True)
test_files = glob('speech_orig.wav')
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]),
                            device=device)

output = model(input)
for example in output:
    print(decoder(example.cpu()))

ONNX

Open In Colab

You can run our model everywhere, where you can import the ONNX model or run ONNX runtime.

import onnx
import torch
import onnxruntime
from omegaconf import OmegaConf

language = 'en' # also available 'de', 'es'

# load provided utils
_, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language=language)
(read_batch, split_into_batches,
 read_audio, prepare_model_input) = utils

# see available models
torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml', 'models.yml')
models = OmegaConf.load('models.yml')
available_languages = list(models.stt_models.keys())
assert language in available_languages

# load the actual ONNX model
torch.hub.download_url_to_file(models.stt_models.en.latest.onnx, 'model.onnx', progress=True)
onnx_model = onnx.load('model.onnx')
onnx.checker.check_model(onnx_model)
ort_session = onnxruntime.InferenceSession('model.onnx')

# download a single file, any format compatible with TorchAudio
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True)
test_files = ['speech_orig.wav']
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]))

# actual onnx inference and decoding
onnx_input = input.detach().cpu().numpy()
ort_inputs = {'input': onnx_input}
ort_outs = ort_session.run(None, ort_inputs)
decoded = decoder(torch.Tensor(ort_outs[0])[0])
print(decoded)

TensorFlow

Open In Colab

SavedModel example

import os
import torch
import subprocess
import tensorflow as tf
import tensorflow_hub as tf_hub
from omegaconf import OmegaConf

language = 'en' # also available 'de', 'es'

# load provided utils using torch.hub for brevity
_, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language=language)
(read_batch, split_into_batches,
 read_audio, prepare_model_input) = utils

# see available models
torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml', 'models.yml')
models = OmegaConf.load('models.yml')
available_languages = list(models.stt_models.keys())
assert language in available_languages

# load the actual tf model
torch.hub.download_url_to_file(models.stt_models.en.latest.tf, 'tf_model.tar.gz')
subprocess.run('rm -rf tf_model && mkdir tf_model && tar xzfv tf_model.tar.gz -C tf_model',  shell=True, check=True)
tf_model = tf.saved_model.load('tf_model')

# download a single file, any format compatible with TorchAudio
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True)
test_files = ['speech_orig.wav']
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]))

# tf inference
res = tf_model.signatures["serving_default"](tf.constant(input.numpy()))['output_0']
print(decoder(torch.Tensor(res.numpy())[0]))

Text-To-Speech

Models and Speakers

All of the provided models are listed in the models.yml file. Any meta-data and newer versions will be added there.

V3

V3 models support SSML. Also see Colab examples for main SSML tag usage.

ID Speakers Auto-stress Language SR Colab
v3_1_ru aidar, baya, kseniya, xenia, eugene, random yes ru (Russian) 8000, 24000, 48000 Open In Colab
v3_en en_0, en_1, ..., en_117, random no en (English) 8000, 24000, 48000 Open In Colab
v3_en_indic tamil_female, ..., assamese_male, random no en (English) 8000, 24000, 48000 Open In Colab
v3_de eva_k, ..., karlsson, random no de (German) 8000, 24000, 48000 Open In Colab
v3_es es_0, es_1, es_2, random no es (Spanish) 8000, 24000, 48000 Open In Colab
v3_fr fr_0, ..., fr_5, random no fr (French) 8000, 24000, 48000 Open In Colab
v3_tt dilyara no tt (Tatar) 8000, 24000, 48000 Open In Colab
v3_ua mykyta, random no ua (Ukrainian) 8000, 24000, 48000 Open In Colab
v3_uz dilnavoz no uz (Uzbek) 8000, 24000, 48000 Open In Colab
v3_xal erdni, delghir, random no xal (Kalmyk) 8000, 24000, 48000 Open In Colab
v3_indic hindi_male, hindi_female, ..., random no indic (Hindi, Telugu, ...) 8000, 24000, 48000 Open In Colab
ru_v3 aidar, baya, kseniya, xenia, random yes ru (Russian) 8000, 24000, 48000 Open In Colab

Dependencies

Basic dependencies for colab examples:

  • torch, 1.10+;
  • torchaudio, latest version bound to PyTorch should work (required only because models are hosted together with STT, not required for work);
  • omegaconf, latest (can be removed as well, if you do not load all of the configs);

PyTorch

Open In Colab

Open on Torch Hub

# V3
import torch

language = 'ru'
model_id = 'v3_1_ru'
sample_rate = 48000
speaker = 'xenia'
device = torch.device('cpu')

model, example_text = torch.hub.load(repo_or_dir='snakers4/silero-models',
                                     model='silero_tts',
                                     language=language,
                                     speaker=model_id)
model.to(device)  # gpu or cpu

audio = model.apply_tts(text=example_text,
                        speaker=speaker,
                        sample_rate=sample_rate)

Standalone Use

  • Standalone usage just requires PyTorch 1.10+ and python standard library;
  • Please see the detailed examples in Colab;
# V3
import os
import torch

device = torch.device('cpu')
torch.set_num_threads(4)
local_file = 'model.pt'

if not os.path.isfile(local_file):
    torch.hub.download_url_to_file('https://models.silero.ai/models/tts/ru/v3_1_ru.pt',
                                   local_file)  

model = torch.package.PackageImporter(local_file).load_pickle("tts_models", "model")
model.to(device)

example_text = 'В недрах тундры выдры в г+етрах т+ырят в вёдра ядра кедров.'
sample_rate = 48000
speaker='baya'

audio_paths = model.save_wav(text=example_text,
                             speaker=speaker,
                             sample_rate=sample_rate)

SSML

Check out our TTS Wiki page.

Indic languages

Example

(!!!) All input sentences should be romanized to ISO format using aksharamukha tool. An example for hindi:

# V3
import torch
from aksharamukha import transliterate

# Loading model
model, example_text = torch.hub.load(repo_or_dir='snakers4/silero-models',
                                     model='silero_tts',
                                     language='indic',
                                     speaker='v3_indic')

orig_text = "प्रसिद्द कबीर अध्येता, पुरुषोत्तम अग्रवाल का यह शोध आलेख, उस रामानंद की खोज करता है"
roman_text = transliterate.process('Devanagari', 'ISO', orig_text)
print(roman_text)

audio = model.apply_tts(roman_text,
                        speaker='hindi_male')

Supported languages

Language Speakers Romanization function
hindi hindi_female, hindi_male transliterate.process('Devanagari', 'ISO', orig_text)
malayalam malayalam_female, malayalam_male transliterate.process('Malayalam', 'ISO', orig_text)
manipuri manipuri_female transliterate.process('Bengali', 'ISO', orig_text)
bengali bengali_female, bengali_male transliterate.process('Bengali', 'ISO', orig_text)
rajasthani rajasthani_female, rajasthani_female transliterate.process('Devanagari', 'ISO', orig_text)
tamil tamil_female, tamil_male transliterate.process('Tamil', 'ISO', orig_text, pre_options=['TamilTranscribe'])
telugu telugu_female, telugu_male transliterate.process('Telugu', 'ISO', orig_text)
gujarati gujarati_female, gujarati_male transliterate.process('Gujarati', 'ISO', orig_text)
kannada kannada_female, kannada_male transliterate.process('Kannada', 'ISO', orig_text)

Text-Enhancement

Languages Quantization Quality Colab
'en', 'de', 'ru', 'es' :heavy_check_mark: link Open In Colab

Dependencies

Basic dependencies for colab examples:

  • torch, 1.9+;
  • pyyaml, but it's installed with torch itself

Standalone Use

  • Standalone usage just requires PyTorch 1.9+ and python standard library;
  • Please see the detailed examples in Colab;
import torch

model, example_texts, languages, punct, apply_te = torch.hub.load(repo_or_dir='snakers4/silero-models',
                                                                  model='silero_te')

input_text = input('Enter input text\n')
apply_te(input_text, lan='en')

FAQ

Wiki

Also check out our wiki.

Performance and Quality

Please refer to this wiki sections:

Adding new Languages

Please refer here.

Contact

Get in Touch

Try our models, create an issue, join our chat, email us, read our news.

Commercial Inquiries

Please see our wiki and tiers for relevant information and email us.

Citations

@misc{Silero Models,
  author = {Silero Team},
  title = {Silero Models: pre-trained enterprise-grade STT / TTS models and benchmarks},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/snakers4/silero-models}},
  commit = {insert_some_commit_here},
  email = {hello@silero.ai}
}

Further reading

English

  • STT:

    • Towards an Imagenet Moment For Speech-To-Text - link
    • A Speech-To-Text Practitioners Criticisms of Industry and Academia - link
    • Modern Google-level STT Models Released - link
  • TTS:

    • Our new public speech synthesis in super-high quality, 10x faster and more stable - link
    • High-Quality Text-to-Speech Made Accessible, Simple and Fast - link
  • VAD:

    • One Voice Detector to Rule Them All - link
    • Modern Portable Voice Activity Detector Released - link
  • Text Enhancement:

    • We have published a model for text repunctuation and recapitalization for four languages - link

Chinese

  • STT:
    • 迈向语音识别领域的 ImageNet 时刻 - link
    • 语音领域学术界和工业界的七宗罪 - link

Russian

  • STT

    • Наши сервисы для бесплатного распознавания речи стали лучше и удобнее - link
    • Telegram-бот Silero бесплатно переводит речь в текст - link
    • Бесплатное распознавание речи для всех желающих - link
    • Последние обновления моделей распознавания речи из Silero Models - link
    • Сжимаем трансформеры: простые, универсальные и прикладные способы cделать их компактными и быстрыми - link
    • Ультимативное сравнение систем распознавания речи: Ashmanov, Google, Sber, Silero, Tinkoff, Yandex - link
    • Мы опубликовали современные STT модели сравнимые по качеству с Google - link
    • Понижаем барьеры на вход в распознавание речи - link
    • Огромный открытый датасет русской речи версия 1.0 - link
    • Насколько Быстрой Можно Сделать Систему STT? - link
    • Наша система Speech-To-Text - link
    • Speech To Text - link
  • TTS:

    • Теперь наш синтез на 20 языках - link
    • Теперь наш публичный синтез в супер-высоком качестве, в 10 раз быстрее и без детских болячек - link
    • Синтезируем голос бабушки, дедушки и Ленина + новости нашего публичного синтеза - link
    • Мы сделали наш публичный синтез речи еще лучше - link
    • Мы Опубликовали Качественный, Простой, Доступный и Быстрый Синтез Речи - link
  • VAD:

    • А ты используешь VAD? Что это такое и зачем он нужен - link
    • Модели для Детекции Речи, Чисел и Распознавания Языков - link
    • Мы опубликовали современный Voice Activity Detector и не только -link
  • Text Enhancement:

    • Восстановление знаков пунктуации и заглавных букв — теперь и на длинных текстах - link
    • Мы опубликовали модель, расставляющую знаки препинания и заглавные буквы в тексте на четырех языках - link

Donations

Please use the "sponsor" button.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

silero-0.4.1.tar.gz (33.6 kB view details)

Uploaded Source

Built Distribution

silero-0.4.1-py3-none-any.whl (20.3 kB view details)

Uploaded Python 3

File details

Details for the file silero-0.4.1.tar.gz.

File metadata

  • Download URL: silero-0.4.1.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for silero-0.4.1.tar.gz
Algorithm Hash digest
SHA256 11a71a26a2d6827e6979d8a683a6112dcf76c34a648d025719343ce244ab6ed0
MD5 fed389d6107eb35a7f6961745b14608f
BLAKE2b-256 79720021b2a03c45207ff128816602a5be80a7a0fcce0ffcf39e0638ce33fd4f

See more details on using hashes here.

File details

Details for the file silero-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: silero-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 20.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for silero-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d87776a4737e253ca11c4b336784842b954415204da601b128bbebcf02a10458
MD5 5ad4229417b8039171d0dadaddc5a6ac
BLAKE2b-256 b63f2fc95d8b023d769c818dc6102ac642b95277e3dc459fdcf4e0628b14b1c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page