Skip to main content

Voice Activity Detector (VAD) by Silero

Project description

Mailing list : test Mailing list : test License: CC BY-NC 4.0

Open In Colab

header


Silero VAD


Silero VAD - pre-trained enterprise-grade Voice Activity Detector (also see our STT models).


Real Time Example

https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-9be7-004c891dd481.mp4


Fast start


Dependencies

System requirements to run python examples on x86-64 systems:

  • python 3.8+;
  • 1G+ RAM;
  • A modern CPU with AVX, AVX2, AVX-512 or AMX instruction sets.

Dependencies:

  • torch>=1.12.0;
  • torchaudio>=0.12.0 (for I/O only);
  • onnxruntime>=1.16.1 (for ONNX model usage).

Silero VAD uses torchaudio library for audio I/O (torchaudio.info, torchaudio.load, and torchaudio.save), so a proper audio backend is required:

  • Option №1 - FFmpeg backend. conda install -c conda-forge 'ffmpeg<7';
  • Option №2 - sox_io backend. apt-get install sox, TorchAudio is tested on libsox 14.4.2;
  • Option №3 - soundfile backend. pip install soundfile.

If you are planning to run the VAD using solely the onnx-runtime, it will run on any other system architectures where onnx-runtume is supported. In this case please note that:

  • You will have to implement the I/O;
  • You will have to adapt the existing wrappers / examples / post-processing for your use-case.

Using pip: pip install silero-vad

from silero_vad import load_silero_vad, read_audio, get_speech_timestamps
model = load_silero_vad()
wav = read_audio('path_to_audio_file')
speech_timestamps = get_speech_timestamps(wav, model)

Using torch.hub:

import torch
torch.set_num_threads(1)

model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad')
(get_speech_timestamps, _, read_audio, _, _) = utils

wav = read_audio('path_to_audio_file')
speech_timestamps = get_speech_timestamps(wav, model)

Key Features


  • Stellar accuracy

    Silero VAD has excellent results on speech detection tasks.

  • Fast

    One audio chunk (30+ ms) takes less than 1ms to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably. Under certain conditions ONNX may even run up to 4-5x faster.

  • Lightweight

    JIT model is around two megabytes in size.

  • General

    Silero VAD was trained on huge corpora that include over 6000 languages and it performs well on audios from different domains with various background noise and quality levels.

  • Flexible sampling rate

    Silero VAD supports 8000 Hz and 16000 Hz sampling rates.

  • Highly Portable

    Silero VAD reaps benefits from the rich ecosystems built around PyTorch and ONNX running everywhere where these runtimes are available.

  • No Strings Attached

    Published under permissive license (MIT) Silero VAD has zero strings attached - no telemetry, no keys, no registration, no built-in expiration, no keys or vendor lock.


Typical Use Cases


  • Voice activity detection for IOT / edge / mobile use cases
  • Data cleaning and preparation, voice detection in general
  • Telephony and call-center automation, voice bots
  • Voice interfaces

Links



Get In Touch


Try our models, create an issue, start a discussion, join our telegram chat, email us, read our news.

Please see our wiki for relevant information and email us directly.

Citations

@misc{Silero VAD,
  author = {Silero Team},
  title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/snakers4/silero-vad}},
  commit = {insert_some_commit_here},
  email = {hello@silero.ai}
}

Examples and VAD-based Community Apps


  • Example of VAD ONNX Runtime model usage in C++

  • Voice activity detection for the browser using ONNX Runtime Web

  • Rust, Go, Java and other examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

silero_vad-5.1.2.tar.gz (5.1 MB view details)

Uploaded Source

Built Distribution

silero_vad-5.1.2-py3-none-any.whl (5.0 MB view details)

Uploaded Python 3

File details

Details for the file silero_vad-5.1.2.tar.gz.

File metadata

  • Download URL: silero_vad-5.1.2.tar.gz
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for silero_vad-5.1.2.tar.gz
Algorithm Hash digest
SHA256 c442971160026d2d7aa0ad83f0c7ee86c89797a65289fe625c8ea59fc6fb828d
MD5 66ab4cc7f56bc1fb9710e02d97f19fe1
BLAKE2b-256 b1b4d0311b2e6220a11f8f4699f4a278cb088131573286cdfe804c87c7eb5123

See more details on using hashes here.

File details

Details for the file silero_vad-5.1.2-py3-none-any.whl.

File metadata

  • Download URL: silero_vad-5.1.2-py3-none-any.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for silero_vad-5.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 93b41953d7774b165407fda6b533c119c5803864e367d5034dc626c82cfdf661
MD5 6f07858bd3563c208e6c9fd3180df2ad
BLAKE2b-256 98f75ae11d13fbb733cd3bfd7ff1c3a3902e6f55437df4b72307c1f168146268

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page