Simple tools for auto classification and text preprocessing
Project description
simager
Tools for Auto Machine Learning and Text Preprocessing. End to end ML research (preprocessing, modelling, hyperparameter tuning) just using a few line of codes
Features
- Auto Classification
- Text Preprocessing
Instalation
pip install simager
Getting Started
- Auto Classification
from simager.ml import ConfigData, ConfigPreprocess, ConfigModel, AutoClassifier
config_data = ConfigData(
target="target",
cat_features = ["column1", "column2"],
num_features = ["column3","column4", "column5"]
)
config_preprocess = ConfigPreprocess(
cat_imputer="SimpleImputer",
num_imputer="SimpleImputer",
scaler="RobustScaler",
encoder="OneHotEncoder"
)
config_model=ConfigModel(algoritm=algoritm=[
"DecisionTreeClassifier",
"KNeighborsClassifier",
"LogisticRegression",
"SVC",
"RandomForestClassifier",
"AdaBoostClassifier",
"XGBClassifier",
"LGBMClassifier",
"CatBoostClassifier"
])
model = AutoClassifier(config_data = config_data,
config_preprocess=config_preprocess,
config_model=config_model)
model.fit(df)
model.hp_tuning()
- Text Preprocessing
from simager.preprocess import TextPreprocess
methods = [
"rm_hastag",
"rm_mention",
"rm_nonascii",
"rm_emoticons",
"rm_html",
"rm_url",
"sparate_str_numb",
"pad_punct",
"rm_punct",
"rm_repeat_char",
"rm_repeat_word",
"rm_numb",
"rm_whitespace",
"normalize",
"stopwords"
]
cleaner = TextPreprocess(methods=methods)
cleaner("your text here)
Full Example of Usage Here
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
simager-0.1.2.tar.gz
(248.8 kB
view details)
Built Distribution
simager-0.1.2-py3-none-any.whl
(249.1 kB
view details)
File details
Details for the file simager-0.1.2.tar.gz
.
File metadata
- Download URL: simager-0.1.2.tar.gz
- Upload date:
- Size: 248.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d548f6b9a278cec92c17809ae2ca16174d5081127c781412c20fd5197998d2ce |
|
MD5 | a737533a882fe89f6fd2bf9f732a5ced |
|
BLAKE2b-256 | 6c6b81759fe7308710f88026234cc9e577aa71e18dafb33bde9dd31ebc0444fa |
File details
Details for the file simager-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: simager-0.1.2-py3-none-any.whl
- Upload date:
- Size: 249.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95224a1e1102a8dc22bd0bf6bd358b5db00873395b41a2a4c48e98de4a3fcb77 |
|
MD5 | 6a470d34969531f95e4d1b4cffe05347 |
|
BLAKE2b-256 | af08932add4e8ddd96e4c478d49bf4cf28e31cb6daf2eecd0214c165498f6ad5 |