A small package for fem
Project description
SIMple Finite Element Methods in PYthon
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import pygmsh
from simfempy.applications.heat import Heat
from simfempy.applications.problemdata import ProblemData
from simfempy.meshes.simplexmesh import SimplexMesh
from simfempy.meshes import plotmesh, animdata
# create mesh
h=0.1
with pygmsh.geo.Geometry() as geom:
holes = []
rectangle = geom.add_rectangle(xmin=-1.5, xmax=-0.5, ymin=-1.5, ymax=-0.5, z=0, mesh_size=h)
geom.add_physical(rectangle.surface, label="200")
geom.add_physical(rectangle.lines, label="20") # required for correct boundary labels (!?)
holes.append(rectangle)
circle = geom.add_circle(x0=[0, 0], radius=0.5, mesh_size=h, num_sections=6, make_surface=False)
geom.add_physical(circle.curve_loop.curves, label="3000")
holes.append(circle)
p = geom.add_rectangle(xmin=-2, xmax=2, ymin=-2, ymax=2, z=0, mesh_size=h, holes=holes)
geom.add_physical(p.surface, label="100")
for i in range(len(p.lines)): geom.add_physical(p.lines[i], label=f"{1000 + i}")
mesh = geom.generate_mesh()
mesh = SimplexMesh(mesh=mesh)
# create problem data
data = ProblemData()
# boundary conditions
data.bdrycond.set("Dirichlet", [1000, 3000])
data.bdrycond.set("Neumann", [1001, 1002, 1003])
data.bdrycond.fct[1000] = lambda x, y, z: 200
data.bdrycond.fct[3000] = lambda x, y, z: 320
# postprocess
data.postproc.set(name='bdrymean_right', type='bdry_mean', colors=1001)
data.postproc.set(name='bdrymean_left', type='bdry_mean', colors=1003)
data.postproc.set(name='bdrymean_up', type='bdry_mean', colors=1002)
data.postproc.set(name='bdrynflux', type='bdry_nflux', colors=[3000])
# paramaters in equation
data.params.set_scal_cells("kheat", [100], 0.001)
data.params.set_scal_cells("kheat", [200], 10.0)
data.params.fct_glob["convection"] = ["0", "0.001"]
# create application
heat = Heat(mesh=mesh, problemdata=data, fem='p1')
static = True
if static:
# run static
result = heat.static()
print(f"{result=}")
# for p, v in result.data['global'].items(): print(f"{p}: {v}")
fig = plt.figure(figsize=(10, 8))
fig.suptitle("Heat static", fontsize=16)
outer = gridspec.GridSpec(1, 2, wspace=0.2, hspace=0.2)
plotmesh.meshWithBoundaries(heat.mesh, fig=fig, outer=outer[0])
result.data.update({'cell': {'k': heat.kheatcell}})
plotmesh.meshWithData(heat.mesh, data=result.data, alpha=0.5, fig=fig, outer=outer[1])
plt.show()
else:
# run dynamic
data.params.fct_glob["initial_condition"] = "200"
t_final, dt, nframes = 2500, 10, 50
result = heat.dynamic(heat.initialCondition(), t_span=(0, t_final), nframes=nframes, dt=dt)
# print(f"{result=}")
nhalf = int(nframes/2)
u = result.data['point']['U']
fig = plt.figure(figsize=(10, 8))
fig.suptitle("Heat dynamic", fontsize=16)
outer = gridspec.GridSpec(1, 3, wspace=0.2, hspace=0.2)
plotmesh.meshWithData(heat.mesh, title=f't={result.time[0]}', point_data={'u': u[0]}, fig=fig, outer=outer[0])
plotmesh.meshWithData(heat.mesh, title=f't={result.time[nhalf]}', point_data={'u': u[nhalf]}, fig=fig, outer=outer[1])
plotmesh.meshWithData(heat.mesh, title=f't={result.time[-1]}', point_data={'u': u[-1]}, fig=fig, outer=outer[2])
plt.show()
postprocs = result.data['global']
for i,k in enumerate(postprocs):
plt.plot(result.time, postprocs[k], label=k)
plt.legend()
plt.grid()
plt.show()
anim = animdata.AnimData(mesh, u)
plt.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
simfempy-2.0.26.tar.gz
(96.1 kB
view hashes)