Skip to main content

Lightweight mobility simulation for quick algorithm prototyping

Project description

simobility

simobility is a light-weight mobility simulation framework. Best for quick prototyping

simobility is a human-friendly Python framework that helps scientists and engineers to prototype and compare fleet optimization algorithms (autonomous and human-driven vehicles). It provides a set of building blocks that can be used to design different simulation scenarious, run simulations and calculate metrics. It is easy to plug in custom demand models, customer behavior models, fleet types, spatio-temporal models (for example, use OSRM for routing vehicles and machine learning models trained on historical data to predict ETA).

Motivation

Create an environment for experiments with machine learning algorithms for decision-making problems in mobility services and compare them to classical solutions.

Some examples:

Installation

pip install simobility

Contributions and thanks

Thanks to all who contributed to the concept/code:

Simulation example

Simple simulation example

Log example

Metrics example

{
    "avg_paid_utilization": 63.98,
    "avg_utilization": 96.87,
    "avg_waiting_time": 292.92,
    "created": 3998,
    "dropoffs": 589,
    "empty_distance": 640.37,
    "empty_distance_pcnt": 33.67,
    "fleet_paid_utilization": 63.98,
    "fleet_utilization": 96.87,
    "num_vehicles": 50,
    "pickup_rate": 15.48,
    "pickups": 619,
    "total_distance": 1902.04,
}

Simulation logs

Read logs with pandas

import pandas as pd

data = pd.read_csv(
    "simulation_output.csv",
    sep=";",
    converters={"details": lambda v: eval(v)},
)

details = data.details.apply(pd.Series)

Run OSRM

wget http://download.geofabrik.de/north-america/us/new-york-latest.osm.pbf
docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-extract -p /opt/car.lua /data/new-york-latest.osm.pbf
docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-partition /data/new-york-latest.osrm
docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-customize /data/new-york-latest.osrm
docker run -d -t -i -p 5010:5000 -v "${PWD}:/data" osrm/osrm-backend osrm-routed --algorithm mld /data/new-york-latest.osrm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simobility-0.3.0.tar.gz (22.6 kB view details)

Uploaded Source

File details

Details for the file simobility-0.3.0.tar.gz.

File metadata

  • Download URL: simobility-0.3.0.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.3

File hashes

Hashes for simobility-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8758755a14d3172b8065fb32b78bef279c2a62b5fc51552bd152470ab8fa2043
MD5 4fd909fc33101e3fac79e5e3ec63d4cf
BLAKE2b-256 3d0b3773e134cb075aca724a2612ca2fe68edf1827b1814e1c1884672a63c16b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page