Skip to main content

A user-friendly Python library for fuzzy logic

Project description

Python package Documentation Status

simpful

A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language. Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets. For more information on its usage, try out the example scripts in this repository or check our online documentation.

Installation

pip install simpful

Citing Simpful

If you find Simpful useful for your research, please cite our work as follows:

Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020 DOI:10.2991/ijcis.d.201012.002

Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system

This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning.

import simpful as sf

# A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply.

FS = sf.FuzzySystem()

# Define a linguistic variable.
S_1 = sf.FuzzySet( points=[[0, 1.],  [1., 1.],  [1.5, 0]],          term="low_flow" )
S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" )
S_3 = sf.FuzzySet( points=[[2., 0],  [2.5, 1.], [3., 1.]],          term="high_flow" )
FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] ))

# Define consequents.
FS.set_crisp_output_value("LOW_POWER", 0)
FS.set_crisp_output_value("MEDIUM_POWER", 25)
FS.set_output_function("HIGH_FUN", "OXI**2")

# Define fuzzy rules.
RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)"
RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)"
RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)"
FS.add_rules([RULE1, RULE2, RULE3])

# Set antecedents values, perform Sugeno inference and print output values.
FS.set_variable("OXI", .51)
print (FS.Sugeno_inference(['POWER']))

Usage example 2: tipping with a Mamdani fuzzy system

This second example shows how to model a FIS using Mamdani inference. It also shows some facilities that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables with equally spaced triangular fuzzy sets) and the automatic detection of the inference method.

from simpful import *

FS = FuzzySystem()

TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10])
FS.add_linguistic_variable("service", TLV)
FS.add_linguistic_variable("quality", TLV)

O1 = TriangleFuzzySet(0,0,13,   term="low")
O2 = TriangleFuzzySet(0,13,25,  term="medium")
O3 = TriangleFuzzySet(13,25,25, term="high")
FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25]))

FS.add_rules([
	"IF (quality IS poor) OR (service IS poor) THEN (tip IS low)",
	"IF (service IS average) THEN (tip IS medium)",
	"IF (quality IS good) OR (service IS good) THEN (tip IS high)"
	])

FS.set_variable("quality", 6.5) 
FS.set_variable("service", 9.8) 

tip = FS.inference()

Additional examples

Additional example scripts are available in the examples folder of this GitHub and in our Code Ocean capsule.

Further info

Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca.

If you need further information, please write an e-mail at: marco.nobile@unive.it.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simpful-2.10.0.tar.gz (33.6 kB view details)

Uploaded Source

Built Distribution

simpful-2.10.0-py3-none-any.whl (31.3 kB view details)

Uploaded Python 3

File details

Details for the file simpful-2.10.0.tar.gz.

File metadata

  • Download URL: simpful-2.10.0.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for simpful-2.10.0.tar.gz
Algorithm Hash digest
SHA256 00a720de3e884491aec9b3e7a8a719660b4e11029ed37093611c66edd1fffe33
MD5 24e0815190c5baf6abe64ac5762aa7e2
BLAKE2b-256 6a601c95cede12e2a8e8e7a69ab1006c8007ee03a9656d8d5d8109995da6e36f

See more details on using hashes here.

File details

Details for the file simpful-2.10.0-py3-none-any.whl.

File metadata

  • Download URL: simpful-2.10.0-py3-none-any.whl
  • Upload date:
  • Size: 31.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for simpful-2.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 633a4156ea0ec285b362e0d19fa02ae81f3e9a73340e8a51a68d5759e4f7dbc9
MD5 0183f6f2e6a537ba2ab4053ad668fdc8
BLAKE2b-256 66ad6ec992495444dcbeba9b18945c51529f8dae31c58d47dea0c7ef2a919cfc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page