Skip to main content

A user-friendly Python library for fuzzy logic

Project description

Python package

simpful

A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language. Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets.

Installation

pip install simpful

Citing Simpful

If you find Simpful useful for your research, please cite our work as follows:

Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020 DOI:10.2991/ijcis.d.201012.002

Usage example 1: tipping with Sugeno

This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning.

import simpful as sf

# A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply.

FS = sf.FuzzySystem()

# Define a linguistic variable.
S_1 = sf.FuzzySet( points=[[0, 1.],  [1., 1.],  [1.5, 0]],          term="low_flow" )
S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" )
S_3 = sf.FuzzySet( points=[[2., 0],  [2.5, 1.], [3., 1.]],          term="high_flow" )
FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] ))

# Define consequents.
FS.set_crisp_output_value("LOW_POWER", 0)
FS.set_crisp_output_value("MEDIUM_POWER", 25)
FS.set_output_function("HIGH_FUN", "OXI**2")

# Define fuzzy rules.
RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)"
RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)"
RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)"
FS.add_rules([RULE1, RULE2, RULE3])

# Set antecedents values, perform Sugeno inference and print output values.
FS.set_variable("OXI", .51)
print (FS.Sugeno_inference(['POWER']))

Usage example 2: tipping with Mamdani

This second example shows how to model a FIS using Mamdani inference. It also shows some facilities that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables with equally spaced triangular fuzzy sets) and the automatic detection of the inference method.

from simpful import *

FS = FuzzySystem()

TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10])
FS.add_linguistic_variable("service", TLV)
FS.add_linguistic_variable("quality", TLV)

O1 = TriangleFuzzySet(0,0,13,   term="low")
O2 = TriangleFuzzySet(0,13,25,  term="medium")
O3 = TriangleFuzzySet(13,25,25, term="high")
FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25]))

FS.add_rules([
	"IF (quality IS poor) OR (service IS poor) THEN (tip IS low)",
	"IF (service IS average) THEN (tip IS medium)",
	"IF (quality IS good) OR (quality IS good) THEN (tip IS high)"
	])

FS.set_variable("quality", 6.5) 
FS.set_variable("service", 9.8) 

tip = FS.inference()

Additional examples

Additional example scripts are available in our Code Ocean capsule.

Further info

Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca.

If you need further information, please write an e-mail at: m.s.nobile@tue.nl.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simpful-2.3.3.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

simpful-2.3.3-py3-none-any.whl (27.5 kB view details)

Uploaded Python 3

File details

Details for the file simpful-2.3.3.tar.gz.

File metadata

  • Download URL: simpful-2.3.3.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.4

File hashes

Hashes for simpful-2.3.3.tar.gz
Algorithm Hash digest
SHA256 70566e8c664bf9adc7b71484197763818dc24e2c2a21eaa120baa11f428e3425
MD5 5a46666a403f96f806627af0380d9cf6
BLAKE2b-256 d5559163b3c89980e312e808458199a2eae1e399f26d5c15cd1e360ce5a32154

See more details on using hashes here.

File details

Details for the file simpful-2.3.3-py3-none-any.whl.

File metadata

  • Download URL: simpful-2.3.3-py3-none-any.whl
  • Upload date:
  • Size: 27.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for simpful-2.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 73ada28822d72c7ff92673729e0f4ffd9bce280b0be325c9f665d341b70fd25b
MD5 d4301a1e30df3b89061490830c37d6d0
BLAKE2b-256 db095a0fc24316bcd3ed69bbe1f04e299a7bd4ff1aa5cbe92d68ef7a99cdef45

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page