Skip to main content

A user-friendly Python library for fuzzy logic

Project description

Python package

simpful

A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language. Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets.

Installation

pip install simpful

Citing Simpful

If you find Simpful useful for your research, please cite our work as follows:

Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020 DOI:10.2991/ijcis.d.201012.002

Usage example 1: tipping with Sugeno

This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning.

import simpful as sf

# A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply.

FS = sf.FuzzySystem()

# Define a linguistic variable.
S_1 = sf.FuzzySet( points=[[0, 1.],  [1., 1.],  [1.5, 0]],          term="low_flow" )
S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" )
S_3 = sf.FuzzySet( points=[[2., 0],  [2.5, 1.], [3., 1.]],          term="high_flow" )
FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] ))

# Define consequents.
FS.set_crisp_output_value("LOW_POWER", 0)
FS.set_crisp_output_value("MEDIUM_POWER", 25)
FS.set_output_function("HIGH_FUN", "OXI**2")

# Define fuzzy rules.
RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)"
RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)"
RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)"
FS.add_rules([RULE1, RULE2, RULE3])

# Set antecedents values, perform Sugeno inference and print output values.
FS.set_variable("OXI", .51)
print (FS.Sugeno_inference(['POWER']))

Usage example 2: tipping with Mamdani

This second example shows how to model a FIS using Mamdani inference. It also shows some facilities that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables with equally spaced triangular fuzzy sets) and the automatic detection of the inference method.

from simpful import *

FS = FuzzySystem()

TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10])
FS.add_linguistic_variable("service", TLV)
FS.add_linguistic_variable("quality", TLV)

O1 = TriangleFuzzySet(0,0,13,   term="low")
O2 = TriangleFuzzySet(0,13,25,  term="medium")
O3 = TriangleFuzzySet(13,25,25, term="high")
FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25]))

FS.add_rules([
	"IF (quality IS poor) OR (service IS poor) THEN (tip IS low)",
	"IF (service IS average) THEN (tip IS medium)",
	"IF (quality IS good) OR (quality IS good) THEN (tip IS high)"
	])

FS.set_variable("quality", 6.5) 
FS.set_variable("service", 9.8) 

tip = FS.inference()

Additional examples

Additional example scripts are available in our Code Ocean capsule.

Further info

Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca.

If you need further information, please write an e-mail at: m.s.nobile@tue.nl.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simpful-2.3.5.tar.gz (15.1 kB view details)

Uploaded Source

Built Distribution

simpful-2.3.5-py3-none-any.whl (27.6 kB view details)

Uploaded Python 3

File details

Details for the file simpful-2.3.5.tar.gz.

File metadata

  • Download URL: simpful-2.3.5.tar.gz
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for simpful-2.3.5.tar.gz
Algorithm Hash digest
SHA256 ea6c348505fc0dea39d02bad39c4981112313269c88e81d57dcb93e5b39a3892
MD5 94b19be84d6f2a591002d9a25bdbfbb4
BLAKE2b-256 f09ebeb45071778d9f003e826e286c7c9b6c56d2592b77fb6311e5829150da79

See more details on using hashes here.

File details

Details for the file simpful-2.3.5-py3-none-any.whl.

File metadata

  • Download URL: simpful-2.3.5-py3-none-any.whl
  • Upload date:
  • Size: 27.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for simpful-2.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 498be73ab76936e56b13b4c3fb66765e4a5ad9a2cd8849cbbfd3308aba7e740a
MD5 d29a5658112a505a8877acf2e8a16467
BLAKE2b-256 108e1d557e77f71adf3ede96db177a800059514432c9e2c6eb35bc5d2d54724c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page