Skip to main content

A user-friendly Python library for fuzzy logic

Project description

Python package Documentation Status

simpful

A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language. Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets. For more information on its usage, try out the example scripts in this repository or check our online documentation.

Installation

pip install simpful

Citing Simpful

If you find Simpful useful for your research, please cite our work as follows:

Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020 DOI:10.2991/ijcis.d.201012.002

Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system

This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning.

import simpful as sf

# A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply.

FS = sf.FuzzySystem()

# Define a linguistic variable.
S_1 = sf.FuzzySet( points=[[0, 1.],  [1., 1.],  [1.5, 0]],          term="low_flow" )
S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" )
S_3 = sf.FuzzySet( points=[[2., 0],  [2.5, 1.], [3., 1.]],          term="high_flow" )
FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] ))

# Define consequents.
FS.set_crisp_output_value("LOW_POWER", 0)
FS.set_crisp_output_value("MEDIUM_POWER", 25)
FS.set_output_function("HIGH_FUN", "OXI**2")

# Define fuzzy rules.
RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)"
RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)"
RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)"
FS.add_rules([RULE1, RULE2, RULE3])

# Set antecedents values, perform Sugeno inference and print output values.
FS.set_variable("OXI", .51)
print (FS.Sugeno_inference(['POWER']))

Usage example 2: tipping with a Mamdani fuzzy system

This second example shows how to model a FIS using Mamdani inference. It also shows some facilities that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables with equally spaced triangular fuzzy sets) and the automatic detection of the inference method.

from simpful import *

FS = FuzzySystem()

TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10])
FS.add_linguistic_variable("service", TLV)
FS.add_linguistic_variable("quality", TLV)

O1 = TriangleFuzzySet(0,0,13,   term="low")
O2 = TriangleFuzzySet(0,13,25,  term="medium")
O3 = TriangleFuzzySet(13,25,25, term="high")
FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25]))

FS.add_rules([
	"IF (quality IS poor) OR (service IS poor) THEN (tip IS low)",
	"IF (service IS average) THEN (tip IS medium)",
	"IF (quality IS good) OR (quality IS good) THEN (tip IS high)"
	])

FS.set_variable("quality", 6.5) 
FS.set_variable("service", 9.8) 

tip = FS.inference()

Additional examples

Additional example scripts are available in the examples folder of this GitHub and in our Code Ocean capsule.

Further info

Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca.

If you need further information, please write an e-mail at: m.s.nobile@tue.nl.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simpful-2.5.0.tar.gz (29.1 kB view details)

Uploaded Source

Built Distribution

simpful-2.5.0-py3-none-any.whl (28.9 kB view details)

Uploaded Python 3

File details

Details for the file simpful-2.5.0.tar.gz.

File metadata

  • Download URL: simpful-2.5.0.tar.gz
  • Upload date:
  • Size: 29.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for simpful-2.5.0.tar.gz
Algorithm Hash digest
SHA256 fb987d582e7dec8f1db7c1010de313f31ce3e6be80b5b787eb1eb435bb5e0855
MD5 bb530e6b8afddcfbf2881ca8f345da35
BLAKE2b-256 4055182768dd1b3893cb1b93c2b9da16ba346a045ae3b732d35c94473325448b

See more details on using hashes here.

File details

Details for the file simpful-2.5.0-py3-none-any.whl.

File metadata

  • Download URL: simpful-2.5.0-py3-none-any.whl
  • Upload date:
  • Size: 28.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for simpful-2.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4a06586196260ae976e209293b57b29adfe5bf07dd317057cdf2cc9581c74fd4
MD5 ba17618e49b4e112ffa6ba2634c968e6
BLAKE2b-256 b91f5d78ce31241bc2db59ec118b48ad5a5e4b203dab7d2882e6b038ea49dbc2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page