Skip to main content

A simple benchmarking package.

Project description

A simple benchmarking package including visualization facilities.

The goal of this package is to provide a simple way to compare the performance of different approaches for different inputs and to visualize the result.


Documentation Status


PyPI Project GitHub Project


Using pip:

python -m pip install simple_benchmark

Or installing the most recent version directly from git:

python -m pip install git+

To utilize the all features of the library (for example visualization) you need to install the optional dependencies:

Or install them automatically using:

python -m pip install simple_benchmark[optional]

Getting started

Suppose you want to compare how NumPys sum and Pythons sum perform on lists of different sizes:

>>> from simple_benchmark import benchmark
>>> import numpy as np
>>> funcs = [sum, np.sum]
>>> arguments = {i: [1]*i for i in [1, 10, 100, 1000, 10000, 100000]}
>>> argument_name = 'list size'
>>> aliases = {sum: 'Python sum', np.sum: 'NumPy sum'}
>>> b = benchmark(funcs, arguments, argument_name, function_aliases=aliases)

The result can be visualized with pandas (needs to be installed):

>>> b
          Python sum  NumPy sum
1       9.640884e-08   0.000004
10      1.726930e-07   0.000004
100     7.935484e-07   0.000008
1000    7.040000e-06   0.000042
10000   6.910000e-05   0.000378
100000  6.899000e-04   0.003941

Or with matplotlib (has to be installed too):

>>> b.plot()

To save the plotted benchmark as PNG file:

>>> import matplotlib.pyplot as plt
>>> plt.savefig('sum_example.png')

Command-Line interface

It’s an experiment to run it as command-line tool, especially useful if you want to run it on multiple files and don’t want the boilerplate.


import numpy as np

def bench_sum(l, func=sum):  # <-- function name needs to start with "bench_"
   return func(l)

def bench_numpy_sum(l, func=np.sum):  # <-- using func parameter with the actual function helps
   return np.sum(l)

def args_list_length():  # <-- function providing the argument starts with "args_"
   for i in [1, 10, 100, 1000, 10000, 100000]:
      yield i, [1] * i

Then run:

$ python -m simple_benchmark sum.png

With a similar result:


Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_benchmark-0.1.0.tar.gz (13.1 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page