Skip to main content

A simple benchmarking package.

Project description

A simple benchmarking package including visualization facilities.

The goal of this package is to provide a simple way to compare the performance of different approaches for different inputs and to visualize the result.

Documentation

Documentation Status

Downloads

PyPI Project GitHub Project

Installation

Using pip:

python -m pip install simple_benchmark

Or installing the most recent version directly from git:

python -m pip install git+https://github.com/MSeifert04/simple_benchmark.git

To utilize the all features of the library (for example visualization) you need to install the optional dependencies:

Or install them automatically using:

python -m pip install simple_benchmark[optional]

Getting started

Suppose you want to compare how NumPys sum and Pythons sum perform on lists of different sizes:

>>> from simple_benchmark import benchmark
>>> import numpy as np
>>> funcs = [sum, np.sum]
>>> arguments = {i: [1]*i for i in [1, 10, 100, 1000, 10000, 100000]}
>>> argument_name = 'list size'
>>> aliases = {sum: 'Python sum', np.sum: 'NumPy sum'}
>>> b = benchmark(funcs, arguments, argument_name, function_aliases=aliases)

The result can be visualized with pandas (needs to be installed):

>>> b
          Python sum  NumPy sum
1       9.640884e-08   0.000004
10      1.726930e-07   0.000004
100     7.935484e-07   0.000008
1000    7.040000e-06   0.000042
10000   6.910000e-05   0.000378
100000  6.899000e-04   0.003941

Or with matplotlib (has to be installed too):

>>> b.plot()

To save the plotted benchmark as PNG file:

>>> import matplotlib.pyplot as plt
>>> plt.savefig('sum_example.png')
./docs/source/sum_example.png

Command-Line interface

Warning

The command line interface is highly experimental. It’s very likely to change its API.

It’s an experiment to run it as command-line tool, especially useful if you want to run it on multiple files and don’t want the boilerplate.

File sum.py:

import numpy as np

def bench_sum(l, func=sum):  # <-- function name needs to start with "bench_"
   return func(l)

def bench_numpy_sum(l, func=np.sum):  # <-- using func parameter with the actual function helps
   return np.sum(l)

def args_list_length():  # <-- function providing the argument starts with "args_"
   for i in [1, 10, 100, 1000, 10000, 100000]:
      yield i, [1] * i

Then run:

$ python -m simple_benchmark sum.py sum.png

With a similar result:

./docs/source/sum_example_cli.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for simple-benchmark, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size simple_benchmark-0.1.0.tar.gz (13.1 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page