No project description provided
Project description
simple-lama-inpainting
Installation
pip install simple-lama-inpainting
Usage
CLI
simple_lama <path_to_input_image> <path_to_mask_image> <path_to_output_image>
Integration to Your Code
Input formats: np.ndarray
or PIL.Image.Image
. (3 channel input image & 1 channel binary mask image where pixels with 255 will be inpainted).
Output format: PIL.Image.Image
from simple_lama_inpainting import SimpleLama
from PIL import Image
simple_lama = SimpleLama()
img_path = "image.png"
mask_path = "mask.png"
image = Image.open(img_path)
mask = Image.open(mask_path)
result = simple_lama(image, mask)
result.save("inpainted.png")
Sources
[1] Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A., Kong, N., Goka, H., Park, K., & Lempitsky, V. (2021). Resolution-robust Large Mask Inpainting with Fourier Convolutions. arXiv preprint arXiv:2109.07161.
[2] https://github.com/saic-mdal/lama
[3] https://github.com/Sanster/lama-cleaner
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file simple_lama_inpainting-0.1.2.tar.gz
.
File metadata
- Download URL: simple_lama_inpainting-0.1.2.tar.gz
- Upload date:
- Size: 7.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.12 Darwin/22.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 575cb6168b11af548976f737c00a5f31a4de503bd0c5f16ba5642941f98264fc |
|
MD5 | d69b8f1573ee3de0bfba6843ee5deb21 |
|
BLAKE2b-256 | 40ea5d211ee285fa225ed5a4ca4a34312711ed0ee30895f80cefdbce2a784cd3 |
File details
Details for the file simple_lama_inpainting-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: simple_lama_inpainting-0.1.2-py3-none-any.whl
- Upload date:
- Size: 9.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.12 Darwin/22.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f8990e75d8c97dc40ccade133cc6fa1021069d9638708080c27dfcf22cf39bfb |
|
MD5 | c7201f3c8f0cc8cb55913efeebd2cd51 |
|
BLAKE2b-256 | 4b286f2f546247c122bfbde4050bb25f794dd0c413ea0a23b26727c41beed76b |