Skip to main content

A python package to simplify data modeling.

Project description

SimpleLearn

A python package to simplify and automate data science workflows such as data modelling.

Installation

$ pip install simple-learn

Primer

This package is based off Google AutoML and hopes to allow people with limited machine learning knowledge to train high performance models for their specific use cases. Similar to AutoML, SimpleLearn aims to create an automatic process of model algorithm selection, hyper parameter tuning, iterative modelling, and model assessment. Under the hood, SimpleLearn is using a greedy algorithm to select/assess the model algorithm while leveraging a grid search to tune model hyperparameters. The metrics for assessing the model can all be configured via input parameters. Keep in mind this package does NOT automate the entire process of data science and assumes you are handling tasks such as data preparation and feature engineering. A strong model algorithm cannot apologize for bad data.

Usage

The following are examples of how to use some of the classes in SimpleLearn.

SimpleClassifier

>>> from sklearn.datasets import load_iris
>>> from simple_learn.classifiers import SimpleClassifier
>>>
>>> iris = load_iris()
>>> clf = SimpleClassifier()
>>> clf.fit(iris.data, iris.target)
>>> clf
{
    "Type": "KNeighborsClassifier",
    "Training Duration": "0.0006814002990722656s",
    "GridSearch Duration": "0.17136621475219727s",
    "Parameters": {
        "metric": "euclidean",
        "n_neighbors": 4,
        "weights": "uniform"
    },
    "Metrics": {
        "Training Accuracy": 0.9866666666666667,
        "Jaccard Score": 0.9245283018867925,
        "F1 Score": 0.96
    }
}

SimpleClassifierList

>>> from sklearn.datasets import load_iris
>>> from simple_learn.classifiers import SimpleClassifierList
>>>
>>> iris = load_iris()
>>> clf_list = SimpleClassifierList()
>>> clf_list.fit(iris.data, iris.target)
>>> clf_list
{
    "Type": "KNeighborsClassifier",
    "Rank": 1,
    "Training Duration": "0.0005269050598144531s",
    "GridSearch Duration": "0.17510604858398438s",
    "Parameters": {
        "metric": "euclidean",
        "n_neighbors": 4,
        "weights": "uniform"
    },
    "Metrics": {
        "Training Accuracy": 0.9866666666666667,
        "Jaccard Score": 0.9245283018867925,
        "F1 Score": 0.96
    },
    "Index": 0
}
{
    "Type": "DecisionTreeClassifier",
    "Rank": 2,
    "Training Duration": "0.0004031658172607422s",
    "GridSearch Duration": "0.06979990005493164s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 3
    },
    "Metrics": {
        "Training Accuracy": 0.9733333333333333,
        "Jaccard Score": 0.9486989764459243,
        "F1 Score": 0.9733226623982927
    },
    "Index": 1
}
{
    "Type": "ExtraTreeClassifier",
    "Rank": 3,
    "Training Duration": "0.00039696693420410156s",
    "GridSearch Duration": "0.11928296089172363s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 4,
        "splitter": "best"
    },
    "Metrics": {
        "Training Accuracy": 0.9666666666666667,
        "Jaccard Score": 0.9611613876319759,
        "F1 Score": 0.97999799979998
    },
    "Index": 2
}
...
>>> clf = clf_list.pop(index=2) # default index is 0
>>> clf
{
    "Type": "ExtraTreeClassifier",
    "Training Duration": "0.00039696693420410156s",
    "GridSearch Duration": "0.11928296089172363s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 4,
        "splitter": "best"
    },
    "Metrics": {
        "Training Accuracy": 0.9666666666666667,
        "Jaccard Score": 0.9611613876319759,
        "F1 Score": 0.97999799979998
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_learn-1.0.1.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

simple_learn-1.0.1-py3-none-any.whl (22.8 kB view details)

Uploaded Python 3

File details

Details for the file simple_learn-1.0.1.tar.gz.

File metadata

  • Download URL: simple_learn-1.0.1.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for simple_learn-1.0.1.tar.gz
Algorithm Hash digest
SHA256 7a76f1dafb8c75095b9fa6c9138f2320c14cef6304d0b8b4da86828c07e5ab8c
MD5 d115acfa125854903c28c608b2ff2a41
BLAKE2b-256 2a9d23ae4d238299aebb360b5b924ea9f05228274c501d0fc1985fb8dd906f89

See more details on using hashes here.

File details

Details for the file simple_learn-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: simple_learn-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 22.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for simple_learn-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 067b6c1f1bff0b08410b8eda92f148ce014aa06470d84e05d8dd2d536ad2945b
MD5 a03ae891736e2a693992d4d60efeab20
BLAKE2b-256 e2fcaefb6e8ba09096e2214962e3a7dc5d03800b024d6d39100a7c6622a6d60f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page