Skip to main content

A python package to simplify data modeling.

Project description

SimpleLearn

A python package to simplify and automate data science workflows such as data modelling.

Installation

$ pip install simple-learn

Primer

This package is based off Google AutoML and hopes to allow people with limited machine learning knowledge to train high performance models for their specific use cases. Similar to AutoML, SimpleLearn aims to create an automatic process of model algorithm selection, hyper parameter tuning, iterative modelling, and model assessment. Under the hood, SimpleLearn is using a greedy algorithm to select/assess the model algorithm while leveraging a grid search to tune model hyperparameters. The metrics for assessing the model can all be configured via input parameters. Keep in mind this package does NOT automate the entire process of data science and assumes you are handling tasks such as data preparation and feature engineering. A strong model algorithm cannot apologize for bad data.

Usage

The following are examples of how to use some of the classes in SimpleLearn.

SimpleClassifier

>>> from sklearn.datasets import load_iris
>>> from simple_learn.classifiers import SimpleClassifier
>>>
>>> iris = load_iris()
>>> clf = SimpleClassifier()
>>> clf.fit(iris.data, iris.target)
>>> clf
{
    "Type": "KNeighborsClassifier",
    "Training Duration": "0.0006814002990722656s",
    "GridSearch Duration": "0.17136621475219727s",
    "Parameters": {
        "metric": "euclidean",
        "n_neighbors": 4,
        "weights": "uniform"
    },
    "Metrics": {
        "Training Accuracy": 0.9866666666666667,
        "Jaccard Score": 0.9245283018867925,
        "F1 Score": 0.96
    }
}

SimpleClassifierList

>>> from sklearn.datasets import load_iris
>>> from simple_learn.classifiers import SimpleClassifierList
>>>
>>> iris = load_iris()
>>> clf_list = SimpleClassifierList()
>>> clf_list.fit(iris.data, iris.target)
>>> clf_list
{
    "Type": "KNeighborsClassifier",
    "Rank": 1,
    "Training Duration": "0.0005269050598144531s",
    "GridSearch Duration": "0.17510604858398438s",
    "Parameters": {
        "metric": "euclidean",
        "n_neighbors": 4,
        "weights": "uniform"
    },
    "Metrics": {
        "Training Accuracy": 0.9866666666666667,
        "Jaccard Score": 0.9245283018867925,
        "F1 Score": 0.96
    },
    "Index": 0
}
{
    "Type": "DecisionTreeClassifier",
    "Rank": 2,
    "Training Duration": "0.0004031658172607422s",
    "GridSearch Duration": "0.06979990005493164s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 3
    },
    "Metrics": {
        "Training Accuracy": 0.9733333333333333,
        "Jaccard Score": 0.9486989764459243,
        "F1 Score": 0.9733226623982927
    },
    "Index": 1
}
{
    "Type": "ExtraTreeClassifier",
    "Rank": 3,
    "Training Duration": "0.00039696693420410156s",
    "GridSearch Duration": "0.11928296089172363s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 4,
        "splitter": "best"
    },
    "Metrics": {
        "Training Accuracy": 0.9666666666666667,
        "Jaccard Score": 0.9611613876319759,
        "F1 Score": 0.97999799979998
    },
    "Index": 2
}
...
>>> clf = clf_list.pop(index=2) # default index is 0
>>> clf
{
    "Type": "ExtraTreeClassifier",
    "Training Duration": "0.00039696693420410156s",
    "GridSearch Duration": "0.11928296089172363s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 4,
        "splitter": "best"
    },
    "Metrics": {
        "Training Accuracy": 0.9666666666666667,
        "Jaccard Score": 0.9611613876319759,
        "F1 Score": 0.97999799979998
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_learn-0.0.18.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

simple_learn-0.0.18-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file simple_learn-0.0.18.tar.gz.

File metadata

  • Download URL: simple_learn-0.0.18.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for simple_learn-0.0.18.tar.gz
Algorithm Hash digest
SHA256 f279bba83474a2cde32c2d3485428e2f2926664a004c6529d65e10485fc4af83
MD5 670f75b841300093f8ed1bc506768ddb
BLAKE2b-256 d5370ac2b936a5546fc5a42c76d8529addb95e01b030d0a775c14b7ba9a589ec

See more details on using hashes here.

File details

Details for the file simple_learn-0.0.18-py3-none-any.whl.

File metadata

  • Download URL: simple_learn-0.0.18-py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for simple_learn-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 66bb390dbd5dbecb6508b4458f9569273399bff677d0c12e42c442ecd6de5983
MD5 8f11323b9b092661b72ef9daf160c114
BLAKE2b-256 f3348fd0ee4f541579eed39236f3fc330f816fed2f285dae65d7bd475e327253

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page