Skip to main content

A python package to simplify data modeling.

Project description

SimpleLearn

A python package to simplify or automate data science workflows.

Installation

pip install simple-learn

Primer

This package is based off Google AutoML and hopes to allow people with limited machine learning knowledge to train high performance models for their specific use cases. Similar to AutoML, SimpleLearn aims to create an automatic process of model algorithm selection, hyper parameter tuning, iterative modelling, and model assessment. Under the hood, SimpleLearn is using a greedy algorithm to select/assess the model algorithm while leveraging a grid search to tune model hyperparameters. The metrics for assessing the model can all be configured via input parameters. Keep in mind this package does NOT automate the entire process of data science and assumes you are handling tasks such as data preparation and feature engineering. A strong model algorithm cannot apologize for bad data.

Usage

The following are examples of how to use some of the classes in SimpleLearn.

SimpleClassifier

>>> from sklearn.datasets import load_iris
>>> from simple_learn.classifiers import SimpleClassifier
>>>
>>> iris = load_iris()
>>> clf = SimpleClassifier()
>>> clf.fit(iris.data, iris.target)
>>> clf
{
    "Type": "KNeighborsClassifier",
    "Training Duration": "0.0006814002990722656s",
    "GridSearch Duration": "0.17136621475219727s",
    "Parameters": {
        "metric": "euclidean",
        "n_neighbors": 4,
        "weights": "uniform"
    },
    "Metrics": {
        "Training Accuracy": 0.9866666666666667,
        "Jaccard Score": 0.9245283018867925,
        "F1 Score": 0.96
    }
}

SimpleClassifierList

>>> from sklearn.datasets import load_iris
>>> from simple_learn.classifiers import SimpleClassifierList
>>>
>>> iris = load_iris()
>>> clf_list = SimpleClassifierList()
>>> clf_list.fit(iris.data, iris.target)
>>> clf_list
{
    "Type": "KNeighborsClassifier",
    "Rank": 1,
    "Training Duration": "0.0005269050598144531s",
    "GridSearch Duration": "0.17510604858398438s",
    "Parameters": {
        "metric": "euclidean",
        "n_neighbors": 4,
        "weights": "uniform"
    },
    "Metrics": {
        "Training Accuracy": 0.9866666666666667,
        "Jaccard Score": 0.9245283018867925,
        "F1 Score": 0.96
    },
    "Index": 0
}
{
    "Type": "DecisionTreeClassifier",
    "Rank": 2,
    "Training Duration": "0.0004031658172607422s",
    "GridSearch Duration": "0.06979990005493164s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 3
    },
    "Metrics": {
        "Training Accuracy": 0.9733333333333333,
        "Jaccard Score": 0.9486989764459243,
        "F1 Score": 0.9733226623982927
    },
    "Index": 1
}
{
    "Type": "ExtraTreeClassifier",
    "Rank": 3,
    "Training Duration": "0.00039696693420410156s",
    "GridSearch Duration": "0.11928296089172363s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 4,
        "splitter": "best"
    },
    "Metrics": {
        "Training Accuracy": 0.9666666666666667,
        "Jaccard Score": 0.9611613876319759,
        "F1 Score": 0.97999799979998
    },
    "Index": 2
}
...
>>> clf = clf_list.pop(index=2) # default index is 0
>>> clf
{
    "Type": "ExtraTreeClassifier",
    "Training Duration": "0.00039696693420410156s",
    "GridSearch Duration": "0.11928296089172363s",
    "Parameters": {
        "criterion": "gini",
        "max_depth": 4,
        "splitter": "best"
    },
    "Metrics": {
        "Training Accuracy": 0.9666666666666667,
        "Jaccard Score": 0.9611613876319759,
        "F1 Score": 0.97999799979998
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_learn-0.0.9.tar.gz (3.6 kB view details)

Uploaded Source

Built Distribution

simple_learn-0.0.9-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file simple_learn-0.0.9.tar.gz.

File metadata

  • Download URL: simple_learn-0.0.9.tar.gz
  • Upload date:
  • Size: 3.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for simple_learn-0.0.9.tar.gz
Algorithm Hash digest
SHA256 4c075797d78ed655e13326f5b1c4a80b4fb7c42888fbd523fa6d63229cb26877
MD5 d92f5ef4a7746300edf045360bf9cc49
BLAKE2b-256 a9deedb0409476cdc863a1ebaa21e5a3345b9e89c33f3f3b005231178cf3d214

See more details on using hashes here.

File details

Details for the file simple_learn-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: simple_learn-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for simple_learn-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 a9c7b0af4e4ca616d1cec51aa32fe5065a7aa26e3c13d5a3ea790c76e8afc540
MD5 d47ede58b61598e282ba112fa22c2652
BLAKE2b-256 d27de58d0630a68460f3d0167134995cd07d46f146503cc5fe00ad7ee47c7e8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page