Skip to main content

very simple model framework

Project description

https://travis-ci.org/AFriemann/simple_model.svg?branch=master https://badge.fury.io/py/simple_model.svg

As the name suggests, this is a very simple model framework. It can be used for data validation and (de-)serialization.

New Head over to v2 now!

Installation

Install with pip:

$ pip install --user simple_model

Usage

This allows me to test the examples by taking care of sorting the dictionaries, it is not required for simple_model to work:

>>> from pprint import pprint

Examples:

>>> from simple_model import Model, Attribute

>>> class Data(Model):
...     name = Attribute(str)
...     some_value = Attribute(str, optional=True)
...     another_value = Attribute(int, fallback=0)

>>> pprint(dict(Data(name = 'test', some_value = None, another_value = 12)))
{'another_value': 12, 'name': 'test', 'some_value': None}

>>> pprint(dict(Data(name = 'test')))
{'another_value': 0, 'name': 'test', 'some_value': None}

>>> init_dict = {'name': 'test', 'some_value': 'val', 'another_value': 3}
>>> pprint(dict(Data(**init_dict)))
{'another_value': 3, 'name': 'test', 'some_value': 'val'}

Initializing with missing attributes while not specifying them as optional or providing a fallback value will result in a ValueError containing all failed attributes. Note that fallback takes precedence over optional, specifying both is unnecessary.

Unknown values will be ignored

>>> pprint(dict(Data(name = 'test', unknown_value = True)))
{'another_value': 0, 'name': 'test', 'some_value': None}

Serialization can be achieved easily, for example

>>> import json
>>> def serialize(model):
...     return json.dumps(dict(model))

>>> def deserialize(string):
...     return Data(**json.loads(string))

Since the Model class simply calls the Attribute class for each parameter and the Attribute class in turn calls the given ‘type’, one could easily use functions instead of types to achieve more complex results and value parsing

>>> from datetime import datetime
>>> def parse_date(string):
...     return datetime.strptime(string, '%Y-%m-%d')

>>> class Data(Model):
...     date = Attribute(parse_date)

>>> dict(Data(date='2015-11-20'))
{'date': datetime.datetime(2015, 11, 20, 0, 0)}

Fallback values can also be given as functions

>>> def fun():
...     return "foo"

>>> class Data(Model):
...     point = Attribute(str, fallback=fun)

>>> dict(Data())
{'point': 'foo'}

If you need to verify Lists of objects, use functions

>>> class Data(Model):
...     points = Attribute(lambda l: list(map(str, l)))

>>> dict(Data(points=['abc', 'def', 'ghi']))
{'points': ['abc', 'def', 'ghi']}

Or the included list_type helper class

>>> from simple_model.helpers import list_type
>>> class Data(Model):
...     points = Attribute(list_type(str))

>>> dict(Data(points=['abc', 'def', 'ghi']))
{'points': ['abc', 'def', 'ghi']}

For more complex data, use Models to verify

>>> class SubData(Model):
...     some_value = Attribute(str)
...     some_other_value = Attribute(int)

>>> class Data(Model):
...     point = Attribute(SubData)

>>> pprint(dict(Data(point={'some_value': 'abc', 'some_other_value': 12})))
{'point': {'some_other_value': 12, 'some_value': 'abc'}}

To allow uncommon names, use the Attribute name keyword

>>> class Data(Model):
...     point = Attribute(str, name='@point')

>>> dict(Data(point='something'))
{'@point': 'something'}

>>> dict(Data(**{ '@point': 'something' }))
{'@point': 'something'}

To easily check against expected values you can use the helper function one_of

>>> from simple_model.helpers import one_of
>>> class Data(Model):
...     foo = Attribute(one_of('bar', 'foobar'))

>>> dict(Data(foo='bar'))
{'foo': 'bar'}

>>> dict(Data(foo='foo')) # doctest: +ELLIPSIS
Traceback (most recent call last):
    ...
ValueError: {...'exception': "ValueError: must be one of ('bar', 'foobar') but was 'foo'"...}

If you want to disallow unknown values, set the __ignore_unknown__ attribute to False

>>> class Data(Model):
...     __ignore_unknown__ = False
...
...     point = Attribute(str)

>>> Data(point = 'abc', other = 'def')
Traceback (most recent call last):
    ...
ValueError: Unknown key "other" with value "def"

You can now set Models to be mutable and change Attribute values after creation

>>> class Data(Model):
...     point = Attribute(int)

>>> d = Data(point = 1)
>>> d.point
1
>>> d.point = 2
>>> d.point
2
>>> d.__mutable__ = False
>>> d.point = 3
Traceback (most recent call last):
    ...
AttributeError: Model is immutable

Tests

To run the tests use tox:

$ tox

Issues

Please submit any issues on GitHub.

Changelog

see CHANGELOG

License

see LICENSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_model-1.3.0.post5.tar.gz (10.0 kB view details)

Uploaded Source

File details

Details for the file simple_model-1.3.0.post5.tar.gz.

File metadata

File hashes

Hashes for simple_model-1.3.0.post5.tar.gz
Algorithm Hash digest
SHA256 45ec8124a53d0c24619d9a7deff3f65eb2f179ba756450d61598b51e367e9b04
MD5 abb53bf83ea17c76386aa8a9038b9b53
BLAKE2b-256 ed54cca82e03ae75874499b003485e41a9e315c0bd37c1436328e959c1433ad8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page