Skip to main content

ROMP [ICCV21], BEV [CVPR22], TRACE [CVPR23]

Project description

Simple_ROMP

Simplified implementation of ROMP [ICCV21], BEV [CVPR22], and TRACE [CVPR23]

As shown in the main page, the differences between ROMP, BEV, and TRACE are:
ROMP has a lighter head to efficiently estimate the SMPL 3D pose/shape parameters and rough 2D position/scale of people in the image.
BEV explicitly reasons about relative depths of people and support all age groups with SMPL+A model.
TRACE tracks specific subjects shown in the first frame and recover their 3D trajectories in global coordinates.

Installation

Please note that this installation is just for ROMP and BEV. If you want to use TRACE as well, please refer to this instrcution.

  1. Installing simple_romp via pip:
pip install --upgrade setuptools numpy cython lap
pip install simple_romp==1.1.3

or download the package and install it from source:

python setup.py install

For Mac users, we strongly recommand to upgrade your pytorch to the latest version to support more basic operations used in BEV. To achieve this, please run

pip install --upgrade torch torchvision

中国人专属-百度网盘模型下载(如果在国内访问Github不便请从这里下载除SMPL和SMIL外所有模型文件,并放到~/.romp/里)

  1. Preparing SMPL model files in our format:

Firstly, please register and download:
a. Meta data from this link. Please unzip it, then we get a folder named "smpl_model_data" b. SMPL model file (SMPL_NEUTRAL.pkl) from "Download version 1.1.0 for Python 2.7 (female/male/neutral, 300 shape PCs)" in official website. Please unzip it and move the SMPL_NEUTRAL.pkl from extracted folder into the "smpl_model_data" folder.
c. (Optional) If you use BEV, please also download SMIL model file (DOWNLOAD SMIL) from official website. Please unzip and put it into the "smpl_model_data" folder, so we have "smpl_model_data/smil/smil_web.pkl".
Then we can get a folder in structure like this:

|-- smpl_model_data
|   |-- SMPL_NEUTRAL.pkl
|   |-- J_regressor_extra.npy
|   |-- J_regressor_h36m.npy
|   |-- smpl_kid_template.npy
|   |-- smil
|   |-- |-- smil_web.pkl

Secondly, please convert the SMPL model files to our format via

# please provide the absolute path of the "smpl_model_data" folder to the source_dir 
romp.prepare_smpl -source_dir=/path/to/smpl_model_data
# (Optional) If you use BEV, please also run:
bev.prepare_smil -source_dir=/path/to/smpl_model_data

The converted file would be save to "~/.romp/" in defualt.

Please don't worry if there are bugs reporting during "Preparing SMPL model files". It is fine as long as we get things like this in "~/.romp/".

|-- .romp
|   |-- SMPL_NEUTRAL.pth
|   |-- SMPLA_NEUTRAL.pth
|   |-- smil_packed_info.pth

Usage

Webcam demo:

romp --mode=webcam --show 
bev --mode=webcam --show

For faster inference with romp on CPU, you may run romp --mode=webcam --show --onnx instead.
For Mac Users, please use the original terminal instead of other terminal app (e.g. iTerm2) to avoid the bug zsh: abort.

In this folder, we prepare some demo images for testing.

Processing a single image:

romp --mode=image --calc_smpl --render_mesh -i=/path/to/image.jpg -o=/path/to/results.jpg
bev -i /path/to/image.jpg -o /path/to/results.jpg

Processing a folder of images:

romp --mode=video --calc_smpl --render_mesh -i=/path/to/image/folder/ -o=/path/to/output/folder/
bev -m video -i /path/to/image/folder/ -o /path/to/output/folder/

Processing a video:

romp --mode=video --calc_smpl --render_mesh -i=/path/to/video.mp4 -o=/path/to/output/folder/results.mp4 --save_video
bev -m video -i /path/to/video.mp4 -o /path/to/output/folder/results.mp4 --save_video

Common optional functions:

# show the results during processing image / video, add:
--show

# items you want to visualized, including mesh,pj2d,j3d,mesh_bird_view,mesh_side_view,center_conf,rotate_mesh. Please add if you want to see more:
--show_items=mesh,mesh_bird_view

ROMP only optional functions:

# to smooth the results in webcam / video processing, add: (the smaller the smooth_coeff (sc) is, the smoother the motion would be) 
-t -sc=3.

# to use the onnx version of ROMP for faster inference, please add:
--onnx

# to show the largest person only (remove the small subjects in background), add:
--show_largest 

More options, see `romp -h`

Note that if you are using CPU for ROMP inference, we highly recommand to add --onnx for much faster speed.

Calling as python lib

Both ROMP and BEV can be called as a python lib for further development.

import romp
settings = romp.main.default_settings 
# settings is just a argparse Namespace. To change it, for instance, you can change mode via
# settings.mode='video'
romp_model = romp.ROMP(settings)
outputs = romp_model(cv2.imread('path/to/image.jpg')) # please note that we take the input image in BGR format (cv2.imread).

import bev
settings = bev.main.default_settings
# settings is just a argparse Namespace. To change it, for instance, you can change mode via
# settings.mode='video'
bev_model = bev.BEV(settings)
outputs = bev_model(cv2.imread('path/to/image.jpg')) # please note that we take the input image in BGR format (cv2.imread).

Export motion to .fbx / .glb / .bvh

Please refer to export.md for details.

Convert checkpoints

To convert the trained ROMP model '.pkl' (like ROMP.pkl) to simple-romp '.pth' model, please run

cd /path/to/ROMP/simple_romp/
python tools/convert_checkpoints.py ROMP.pkl ROMP.pth

How to load the results saved in .npz file

import numpy as np
results = np.load('/path/to/results.npz',allow_pickle=True)['results'][()]

Joints in output .npz file

We generate 2D/3D position of 71 joints from estimated 3D body meshes.
The 71 joints are 24 SMPL joints + 30 extra joints + 17 h36m joints:

SMPL_24 = {
'Pelvis_SMPL':0, 'L_Hip_SMPL':1, 'R_Hip_SMPL':2, 'Spine_SMPL': 3, 'L_Knee':4, 'R_Knee':5, 'Thorax_SMPL': 6, 'L_Ankle':7, 'R_Ankle':8,'Thorax_up_SMPL':9,
'L_Toe_SMPL':10, 'R_Toe_SMPL':11, 'Neck': 12, 'L_Collar':13, 'R_Collar':14, 'Jaw':15, 'L_Shoulder':16, 'R_Shoulder':17,
'L_Elbow':18, 'R_Elbow':19, 'L_Wrist': 20, 'R_Wrist': 21, 'L_Hand':22, 'R_Hand':23}
SMPL_EXTRA_30 = {
'Nose':24, 'R_Eye':25, 'L_Eye':26, 'R_Ear': 27, 'L_Ear':28,
'L_BigToe':29, 'L_SmallToe': 30, 'L_Heel':31, 'R_BigToe':32,'R_SmallToe':33, 'R_Heel':34,
'L_Hand_thumb':35, 'L_Hand_index': 36, 'L_Hand_middle':37, 'L_Hand_ring':38, 'L_Hand_pinky':39,
'R_Hand_thumb':40, 'R_Hand_index':41,'R_Hand_middle':42, 'R_Hand_ring':43, 'R_Hand_pinky': 44,
'R_Hip': 45, 'L_Hip':46, 'Neck_LSP':47, 'Head_top':48, 'Pelvis':49, 'Thorax_MPII':50,
'Spine_H36M':51, 'Jaw_H36M':52, 'Head':53}

H36m 17 joints are just regressed them for fair comparison with previous methods. I am not sure their precise joint names.

Copyright

Codes released under MIT license. All rights reserved by Yu Sun.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

simple_romp-2.0.2-cp39-cp39-manylinux1_x86_64.whl (394.5 kB view details)

Uploaded CPython 3.9

File details

Details for the file simple_romp-2.0.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for simple_romp-2.0.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3bf40c9ed0181c303b37511266cda5e79e2c486a86c59e86e14e4518c0b3000b
MD5 2de11e1ffaf95b114399ac3a487639fe
BLAKE2b-256 c6bd8f76e798c02f0df07bfa7a527ff3eab350927ba46b87f5814fc135b1d87d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page