Skip to main content

A dead-simple utility that validates if object has a certain structure.

Project description

Simple schema validator

coverage

A dead-simple utility that validates if object has a certain structure. Used in some of our projects.

Basic usage

pip install simple_schema_validator

An example:

Lets say we have an API that returns the following data:

{
  "user": 1,
  "profile": {
    "email": "some@user.com",
    "name": "Some User",
    "age": 20
  },
  "tokens": {
    "jwt": "...",
    "refresh": "...",
    "firebase": "...",
  }
}

And we are writing a simple integration test, that wants to assure the response has a certain structure.

Then we can use the schema validator like so:

from simple_schema_validator import schema_validator

data = get_data_from_api()

schema = {
  'user': Any,
  'profile': {
    'email': Any,
    'name': Any,
    'age': Any
  },
  'tokens': {
    'jwt': Any,
    'refresh': Any,
    'firebase': Any
  }
}

validation = schema_validator(schema, data)

if not validation:
    print(f'Keys in data, but not in schema: {validation.additional_keys}')
    print(f'Keys in schema, but not in data: {validation.missing_keys}')
    print(f'Keys with different type from schema {validation.type_errors}')
  • missing_keys are those keys that are required in the schema, but not found in data.
  • additional_keys are those keys present in data, but not required by the schema.
  • validation_errors are those keys, that are having a different type in data, from the defined in schema.

Nested keys are represented with "dot" notation - profile.email, tokens.jwt, etc.

Type checking

The util supports simple schema type checking.

Currently, the supported types in the schema are:

  • int
  • float
  • str
  • bool
  • typing.Any (from Python typing library)
  • simple_schema_validator.types.Optional (custom type, define in the package)

If the type is Any, no type checking is done.

If there's a type mismatch, the errors are placed in the type_errors attribute of the result, which is a list of type errors.

The general format of a single type error is:

{
  'path': 'the.path.to.the.value.in.data',
  'expected': the_expected_type_as_defined_in_the_schema,
  'actual': the_actual_type_of_the_value
}

Here's an example:

from simple_schema_validator import schema_validator, types


schema = {
  'user': str,
  'profile': {
    'email': str,
    'name': str,
    'age': int
  },
  'tokens': {
    'jwt': str,
    'refresh': str,
    'firebase': str
  }
}

data = {
  'user': 'Some User',
  'profile': {
    'email': 'someuser@hacksoft.io',
    'name': 'Some User',
    'age': "29"
  },
  'tokens': {
    'jwt': 'some token value',
    'refresh': 'some token value',
    'firebase': 'some token value'
  }

}

result = schema_validator(schema, data)


assert bool(result) is False
assert result.type_errors == [{'path': 'profile.age', 'expected': int, 'actual': str}]

Optional types

The schema validator support optional types.

You can do the following:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[int]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': 'some_string'
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is True
assert bool(schema_validator(schema, data_3)) is False

Additionally, you can define optional branches in the schema:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[{
    'b': int
  }]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': {
    'b': 1
  }
}

data_4 = {
  'a': {
    'b': 'some_string'
  }
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
assert bool(schema_validator(schema, data_3)) is True
assert bool(schema_validator(schema, data_4)) is False

You can use it with optional lists aswell:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[[int]]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': [1, 2, 3]
}

data_4 = {
  'a': ['some_string']
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
assert bool(schema_validator(schema, data_3)) is True
assert bool(schema_validator(schema, data_4)) is False

List types

The schema validator support list types.

You can do the following:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.List[int]
}

data_1 = {
  'a': [1, 2, 3]
}

data_3 = {
  'a': ['some_string']
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False

Recursive schemas

The schema validator support type checking for schemas in list.

You can do the following:

from simple_schema_validator import schema_validator, types

schema = {
  'a': [{'b': int}]
}

data_1 = {
  'a': [{'b': 1}]
}

data_2 = {
  'a': [{'b': 'some_string'}]
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
from simple_schema_validator import schema_validator, types

schema = {
  'a': [{'b': [int]}]
}

data_1 = {
  'a': [{'b': [1]}]
}

data_2 = {
  'a': [{'b': [1, 2, 3]}]
}

data_3 = {
  'a': [{'b': ['some_string']}]
}

data_4 = {
  'a': [{'b': [1, 'some_string']}]
}

data_5 = {
  'a': [{'b': ['some_string', 'other_string']}]
}

data_6 = {
  'a': [{'b': ['some_string', 1]}]
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is True
assert bool(schema_validator(schema, data_3)) is False
assert bool(schema_validator(schema, data_4)) is False
assert bool(schema_validator(schema, data_5)) is False
assert bool(schema_validator(schema, data_6)) is False

You can do the same with optional branches aswell:

from simple_schema_validator import schema_validator, types

schema = {
  'a': [{'b': types.Optional[int]}]
}

data_1 = {
  'a': [{
    'b': {
      'c': 1,
      'd': 2
    }
  }]
}

data_2 = {
  'a': [{'b': 'some_string'}]
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False

Examples

For examples, check the examples folder or the tests for the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_schema_validator-0.0.9.tar.gz (8.0 kB view details)

Uploaded Source

Built Distribution

simple_schema_validator-0.0.9-py2.py3-none-any.whl (9.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file simple_schema_validator-0.0.9.tar.gz.

File metadata

  • Download URL: simple_schema_validator-0.0.9.tar.gz
  • Upload date:
  • Size: 8.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.9.tar.gz
Algorithm Hash digest
SHA256 81382f2292ebbd5f475b232beb25002f345794ae4668603eb48435534dbeca02
MD5 867b927fd43cb73116357a10e4337de9
BLAKE2b-256 2cda7cb82756fc52eea3599142b72fa6467325b0c8eaac546d950f4ccb1b29d1

See more details on using hashes here.

File details

Details for the file simple_schema_validator-0.0.9-py2.py3-none-any.whl.

File metadata

  • Download URL: simple_schema_validator-0.0.9-py2.py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.9-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d72af6f10b1af94c612bf6658868801e47d5fd55114473f00a1e56ad21504373
MD5 1690f0bb13c716a940e40420813e011d
BLAKE2b-256 2bdf82a61d86ac080cb7d8a9fb01e82590cdb5ce9515f172aa95aa33e72dbc5e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page