A dead-simple utility that validates if object has a certain structure.
Project description
Simple schema validator
A dead-simple utility that validates if object has a certain structure. Used in some of our projects.
Basic usage
pip install simple_schema_validator
An example:
Lets say we have an API that returns the following data:
{
"user": 1,
"profile": {
"email": "some@user.com",
"name": "Some User",
"age": 20
},
"tokens": {
"jwt": "...",
"refresh": "...",
"firebase": "...",
}
}
And we are writing a simple integration test, that wants to assure the response has a certain structure.
Then we can use the schema validator like so:
from simple_schema_validator import schema_validator
data = get_data_from_api()
schema = {
'user': Any,
'profile': {
'email': Any,
'name': Any,
'age': Any
},
'tokens': {
'jwt': Any,
'refresh': Any,
'firebase': Any
}
}
validation = schema_validator(schema, data)
if not validation:
print(f'Keys in data, but not in schema: {validation.additional_keys}')
print(f'Keys in schema, but not in data: {validation.missing_keys}')
print(f'Keys with different type from schema {validation.type_errors}')
missing_keys
are those keys that are required in theschema
, but not found indata
.additional_keys
are those keys present indata
, but not required by theschema
.validation_errors
are those keys, that are having a different type indata
, from the defined inschema
.
Nested keys are represented with "dot" notation - profile.email
, tokens.jwt
, etc.
Type checking
The util supports simple schema type checking.
Currently, the supported types in the schema are:
int
float
str
bool
typing.Any
(from Pythontyping
library)simple_schema_validator.types.Optional
(custom type, define in the package)
If the type is Any
, no type checking is done.
If there's a type mismatch, the errors are placed in the type_errors
attribute of the result, which is a list of type errors.
The general format of a single type error is:
{
'path': 'the.path.to.the.value.in.data',
'expected': the_expected_type_as_defined_in_the_schema,
'actual': the_actual_type_of_the_value
}
Here's an example:
from simple_schema_validator import schema_validator, types
schema = {
'user': str,
'profile': {
'email': str,
'name': str,
'age': int
},
'tokens': {
'jwt': str,
'refresh': str,
'firebase': str
}
}
data = {
'user': 'Some User',
'profile': {
'email': 'someuser@hacksoft.io',
'name': 'Some User',
'age': "29"
},
'tokens': {
'jwt': 'some token value',
'refresh': 'some token value',
'firebase': 'some token value'
}
}
result = schema_validator(schema, data)
assert bool(result) is False
assert result.type_errors == [{'path': 'profile.age', 'expected': int, 'actual': str}]
Optional types
The schema validator support optional types.
You can do the following:
from simple_schema_validator import schema_validator, types
schema = {
'a': types.Optional[int]
}
data_1 = {
'a': None
}
data_2 = {
'a': 1
}
data_3 = {
'a': 'some_string'
}
assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is True
assert bool(schema_validator(schema, data_3)) is False
Additionally, you can define optional branches in the schema:
from simple_schema_validator import schema_validator, types
schema = {
'a': types.Optional[{
'b': int
}]
}
data_1 = {
'a': None
}
data_2 = {
'a': 1
}
data_3 = {
'a': {
'b': 1
}
}
data_4 = {
'a': {
'b': 'some_string'
}
}
assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
assert bool(schema_validator(schema, data_3)) is True
assert bool(schema_validator(schema, data_4)) is False
You can use it with optional lists aswell:
from simple_schema_validator import schema_validator, types
schema = {
'a': types.Optional[[int]]
}
data_1 = {
'a': None
}
data_2 = {
'a': 1
}
data_3 = {
'a': [1, 2, 3]
}
data_4 = {
'a': ['some_string']
}
assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
assert bool(schema_validator(schema, data_3)) is True
assert bool(schema_validator(schema, data_4)) is False
List types
The schema validator support list types.
You can do the following:
from simple_schema_validator import schema_validator, types
schema = {
'a': types.List[int]
}
data_1 = {
'a': [1, 2, 3]
}
data_3 = {
'a': ['some_string']
}
assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
Recursive schemas
The schema validator support type checking for schemas in list.
You can do the following:
from simple_schema_validator import schema_validator, types
schema = {
'a': [{'b': int}]
}
data_1 = {
'a': [{'b': 1}]
}
data_2 = {
'a': [{'b': 'some_string'}]
}
assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
from simple_schema_validator import schema_validator, types
schema = {
'a': [{'b': [int]}]
}
data_1 = {
'a': [{'b': [1]}]
}
data_2 = {
'a': [{'b': [1, 2, 3]}]
}
data_3 = {
'a': [{'b': ['some_string']}]
}
data_4 = {
'a': [{'b': [1, 'some_string']}]
}
data_5 = {
'a': [{'b': ['some_string', 'other_string']}]
}
data_6 = {
'a': [{'b': ['some_string', 1]}]
}
assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is True
assert bool(schema_validator(schema, data_3)) is False
assert bool(schema_validator(schema, data_4)) is False
assert bool(schema_validator(schema, data_5)) is False
assert bool(schema_validator(schema, data_6)) is False
You can do the same with optional branches aswell:
from simple_schema_validator import schema_validator, types
schema = {
'a': [{'b': types.Optional[int]}]
}
data_1 = {
'a': [{
'b': {
'c': 1,
'd': 2
}
}]
}
data_2 = {
'a': [{'b': 'some_string'}]
}
assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
Examples
For examples, check the examples folder or the tests for the project.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file simple_schema_validator-0.0.9.tar.gz
.
File metadata
- Download URL: simple_schema_validator-0.0.9.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81382f2292ebbd5f475b232beb25002f345794ae4668603eb48435534dbeca02 |
|
MD5 | 867b927fd43cb73116357a10e4337de9 |
|
BLAKE2b-256 | 2cda7cb82756fc52eea3599142b72fa6467325b0c8eaac546d950f4ccb1b29d1 |
File details
Details for the file simple_schema_validator-0.0.9-py2.py3-none-any.whl
.
File metadata
- Download URL: simple_schema_validator-0.0.9-py2.py3-none-any.whl
- Upload date:
- Size: 9.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d72af6f10b1af94c612bf6658868801e47d5fd55114473f00a1e56ad21504373 |
|
MD5 | 1690f0bb13c716a940e40420813e011d |
|
BLAKE2b-256 | 2bdf82a61d86ac080cb7d8a9fb01e82590cdb5ce9515f172aa95aa33e72dbc5e |