Skip to main content

A dead-simple utility that validates if object has a certain structure.

Project description

Simple schema validator

A dead-simple utility that validates if object has a certain structure. Used in some of our projects.

Basic usage

pip install simple_schema_validator

An example:

Lets say we have an API that returns the following data:

{
  "user": 1,
  "profile": {
    "email": "some@user.com",
    "name": "Some User",
    "age": 20
  },
  "tokens": {
    "jwt": "...",
    "refresh": "...",
    "firebase": "...",
  }
}

And we are writing a simple integration test, that wants to assure the response has a certain structure.

Then we can use the schema validator like so:

from simple_schema_validator import schema_validator

data = get_data_from_api()

schema = {
  'user': Any,
  'profile': {
    'email': Any,
    'name': Any,
    'age': Any
  },
  'tokens': {
    'jwt': Any,
    'refresh': Any,
    'firebase': Any
  }
}

result = schema_validator(schema, data)

if not result:
    print(f'Schema not valid. Missing: {result.missing_keys}, additional: {result.additional_keys}')
  • missing_keys are those keys that are required in the schema, but not found in data.
  • additional_keys are those keys present in data, but not required by the schema.
  • Nested keys are represented with "dot" notation - profile.email, tokens.jwt, etc.

Type checking

The util supports simple schema type checking.

Currently, the supported types in the schema are:

  • Any
  • int
  • float
  • str
  • bool

If the type is Any, no type checking is done.

If there's a type mismatch, the errors are placed in the type_errors attribute of the result, which is a list of type errors.

The general format of a single type error is:

{
  'path': 'the.path.to.the.value.in.data',
  'expected': the_expected_type_as_defined_in_the_schema,
  'actual': the_actual_type_of_the_value
}

Here's an example:

from simple_schema_validator import schema_validator


schema = {
  'user': str,
  'profile': {
    'email': str,
    'name': str,
    'age': int
  },
  'tokens': {
    'jwt': str,
    'refresh': str,
    'firebase': str
  }
}

data = {
  'user': 'Some User',
  'profile': {
    'email': 'someuser@hacksoft.io',
    'name': 'Some User',
    'age': "29"
  },
  'tokens': {
    'jwt': 'some token value',
    'refresh': 'some token value',
    'firebase': 'some token value'
  }

}

result = schema_validator(schema, data)


assert bool(result) is False
assert result.type_errors == [{'path': 'profile.age', 'expected': int, 'actual': str}]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for simple-schema-validator, version 0.0.5
Filename, size File type Python version Upload date Hashes
Filename, size simple_schema_validator-0.0.5-py2.py3-none-any.whl (6.1 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size simple_schema_validator-0.0.5.tar.gz (6.0 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page