Skip to main content

A dead-simple utility that validates if object has a certain structure.

Project description

Simple schema validator

A dead-simple utility that validates if object has a certain structure. Used in some of our projects.

Basic usage

pip install simple_schema_validator

An example:

Lets say we have an API that returns the following data:

{
  "user": 1,
  "profile": {
    "email": "some@user.com",
    "name": "Some User",
    "age": 20
  },
  "tokens": {
    "jwt": "...",
    "refresh": "...",
    "firebase": "...",
  }
}

And we are writing a simple integration test, that wants to assure the response has a certain structure.

Then we can use the schema validator like so:

from simple_schema_validator import schema_validator

data = get_data_from_api()

schema = {
  'user': Any,
  'profile': {
    'email': Any,
    'name': Any,
    'age': Any
  },
  'tokens': {
    'jwt': Any,
    'refresh': Any,
    'firebase': Any
  }
}

result = schema_validator(schema, data)

if not result:
    print(f'Schema not valid. Missing: {result.missing_keys}, additional: {result.additional_keys}')
  • missing_keys are those keys that are required in the schema, but not found in data.
  • additional_keys are those keys present in data, but not required by the schema.
  • Nested keys are represented with "dot" notation - profile.email, tokens.jwt, etc.

Type checking

The util supports simple schema type checking.

Currently, the supported types in the schema are:

  • Any
  • int
  • float
  • str
  • bool

If the type is Any, no type checking is done.

If there's a type mismatch, the errors are placed in the type_errors attribute of the result, which is a list of type errors.

The general format of a single type error is:

{
  'path': 'the.path.to.the.value.in.data',
  'expected': the_expected_type_as_defined_in_the_schema,
  'actual': the_actual_type_of_the_value
}

Here's an example:

from simple_schema_validator import schema_validator, types


schema = {
  'user': str,
  'profile': {
    'email': str,
    'name': str,
    'age': int
  },
  'tokens': {
    'jwt': str,
    'refresh': str,
    'firebase': str
  }
}

data = {
  'user': 'Some User',
  'profile': {
    'email': 'someuser@hacksoft.io',
    'name': 'Some User',
    'age': "29"
  },
  'tokens': {
    'jwt': 'some token value',
    'refresh': 'some token value',
    'firebase': 'some token value'
  }

}

result = schema_validator(schema, data)


assert bool(result) is False
assert result.type_errors == [{'path': 'profile.age', 'expected': int, 'actual': str}]

Optional types

The schema validator support optional types.

You can do the following:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[int]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': 'some_string'
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is True
assert bool(schema_validator(schema, data_3)) is False

Additionally, you can define optional branches in the schema:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[{
    'b': int
  }]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': {
    'b': 1
  }
}

data_4 = {
  'a': {
    'b': 'some_string'
  }
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
assert bool(schema_validator(schema, data_3)) is True
assert bool(schema_validator(schema, data_4)) is False

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_schema_validator-0.0.6.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

simple_schema_validator-0.0.6-py2.py3-none-any.whl (7.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file simple_schema_validator-0.0.6.tar.gz.

File metadata

  • Download URL: simple_schema_validator-0.0.6.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.6.tar.gz
Algorithm Hash digest
SHA256 ddb96b8f131d9e843af63898e5d58dbc90a4ed9f9cc91d2c4c360cfb7e08cb53
MD5 4cd273d25cac6275f14437954d6a51e2
BLAKE2b-256 293104950fa4645e176800f690a86c7bc4bbbbd1b4a092a24f3a646f0f87ffb8

See more details on using hashes here.

File details

Details for the file simple_schema_validator-0.0.6-py2.py3-none-any.whl.

File metadata

  • Download URL: simple_schema_validator-0.0.6-py2.py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 19a5f475172a7add73dc38b2ea2861d462bde450eb61e1e42b9251f4e9359ffd
MD5 7215f25e6d19b00ebcc542e6bc8c531c
BLAKE2b-256 a5665a3e3d531982f18186f8dea956fd2e3cf8f026dfa8e28e45bd48bf8c50d8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page