Skip to main content

A dead-simple utility that validates if object has a certain structure.

Project description

Simple schema validator

A dead-simple utility that validates if object has a certain structure. Used in some of our projects.

Basic usage

pip install simple_schema_validator

An example:

Lets say we have an API that returns the following data:

{
  "user": 1,
  "profile": {
    "email": "some@user.com",
    "name": "Some User",
    "age": 20
  },
  "tokens": {
    "jwt": "...",
    "refresh": "...",
    "firebase": "...",
  }
}

And we are writing a simple integration test, that wants to assure the response has a certain structure.

Then we can use the schema validator like so:

from simple_schema_validator import schema_validator

data = get_data_from_api()

schema = {
  'user': Any,
  'profile': {
    'email': Any,
    'name': Any,
    'age': Any
  },
  'tokens': {
    'jwt': Any,
    'refresh': Any,
    'firebase': Any
  }
}

result = schema_validator(schema, data)

if not result:
    print(f'Schema not valid. Missing: {result.missing_keys}, additional: {result.additional_keys}')
  • missing_keys are those keys that are required in the schema, but not found in data.
  • additional_keys are those keys present in data, but not required by the schema.
  • Nested keys are represented with "dot" notation - profile.email, tokens.jwt, etc.

Type checking

The util supports simple schema type checking.

Currently, the supported types in the schema are:

  • Any
  • int
  • float
  • str
  • bool

If the type is Any, no type checking is done.

If there's a type mismatch, the errors are placed in the type_errors attribute of the result, which is a list of type errors.

The general format of a single type error is:

{
  'path': 'the.path.to.the.value.in.data',
  'expected': the_expected_type_as_defined_in_the_schema,
  'actual': the_actual_type_of_the_value
}

Here's an example:

from simple_schema_validator import schema_validator, types


schema = {
  'user': str,
  'profile': {
    'email': str,
    'name': str,
    'age': int
  },
  'tokens': {
    'jwt': str,
    'refresh': str,
    'firebase': str
  }
}

data = {
  'user': 'Some User',
  'profile': {
    'email': 'someuser@hacksoft.io',
    'name': 'Some User',
    'age': "29"
  },
  'tokens': {
    'jwt': 'some token value',
    'refresh': 'some token value',
    'firebase': 'some token value'
  }

}

result = schema_validator(schema, data)


assert bool(result) is False
assert result.type_errors == [{'path': 'profile.age', 'expected': int, 'actual': str}]

Optional types

The schema validator support optional types.

You can do the following:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[int]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': 'some_string'
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is True
assert bool(schema_validator(schema, data_3)) is False

Additionally, you can define optional branches in the schema:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[{
    'b': int
  }]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': {
    'b': 1
  }
}

data_4 = {
  'a': {
    'b': 'some_string'
  }
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
assert bool(schema_validator(schema, data_3)) is True
assert bool(schema_validator(schema, data_4)) is False

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_schema_validator-0.0.7.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

simple_schema_validator-0.0.7-py2.py3-none-any.whl (8.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file simple_schema_validator-0.0.7.tar.gz.

File metadata

  • Download URL: simple_schema_validator-0.0.7.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.7.tar.gz
Algorithm Hash digest
SHA256 22b73ecf76bea60ecd6f3e8b50ef7d6df310a48d13798b3d7bd5718ed423b178
MD5 d6ff74e0401bae415d4a0a3da1135a0a
BLAKE2b-256 feedbbd719d3cc885bdaa62b6b9ce4e7e4dc97deed0122baaa5d0fecaed5f69e

See more details on using hashes here.

File details

Details for the file simple_schema_validator-0.0.7-py2.py3-none-any.whl.

File metadata

  • Download URL: simple_schema_validator-0.0.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f75c2827e549dc7b6a0f118a06f0202ad6224dcedfa15842ddbdeafa13b87dc6
MD5 415c7ec46b9cd87c9bfedd362ae9bfce
BLAKE2b-256 6f5f6dc937846baba4d7cd2416d5f2250138d64ae027736d3675b7dc72a5911d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page