Skip to main content

A dead-simple utility that validates if object has a certain structure.

Project description

Simple schema validator

A dead-simple utility that validates if object has a certain structure. Used in some of our projects.

Basic usage

pip install simple_schema_validator

An example:

Lets say we have an API that returns the following data:

{
  "user": 1,
  "profile": {
    "email": "some@user.com",
    "name": "Some User",
    "age": 20
  },
  "tokens": {
    "jwt": "...",
    "refresh": "...",
    "firebase": "...",
  }
}

And we are writing a simple integration test, that wants to assure the response has a certain structure.

Then we can use the schema validator like so:

from simple_schema_validator import schema_validator

data = get_data_from_api()

schema = {
  'user': Any,
  'profile': {
    'email': Any,
    'name': Any,
    'age': Any
  },
  'tokens': {
    'jwt': Any,
    'refresh': Any,
    'firebase': Any
  }
}

validation = schema_validator(schema, data)

if not result:
    print(f'Keys in data, but not in schema: {validation.additional_keys}')
    print(f'Keys in schema, but not in data: {validation.missing_keys}')
    print(f'Keys with different type from schema {validation.type_errors}')
  • missing_keys are those keys that are required in the schema, but not found in data.
  • additional_keys are those keys present in data, but not required by the schema.
  • validation_errors are those keys, that are having a different type in data, from the defined in schema.

Nested keys are represented with "dot" notation - profile.email, tokens.jwt, etc.

Type checking

The util supports simple schema type checking.

Currently, the supported types in the schema are:

  • int
  • float
  • str
  • bool
  • typing.Any (from Python typing library)
  • simple_schema_validator.types.Optional (custom type, define in the package)

If the type is Any, no type checking is done.

If there's a type mismatch, the errors are placed in the type_errors attribute of the result, which is a list of type errors.

The general format of a single type error is:

{
  'path': 'the.path.to.the.value.in.data',
  'expected': the_expected_type_as_defined_in_the_schema,
  'actual': the_actual_type_of_the_value
}

Here's an example:

from simple_schema_validator import schema_validator, types


schema = {
  'user': str,
  'profile': {
    'email': str,
    'name': str,
    'age': int
  },
  'tokens': {
    'jwt': str,
    'refresh': str,
    'firebase': str
  }
}

data = {
  'user': 'Some User',
  'profile': {
    'email': 'someuser@hacksoft.io',
    'name': 'Some User',
    'age': "29"
  },
  'tokens': {
    'jwt': 'some token value',
    'refresh': 'some token value',
    'firebase': 'some token value'
  }

}

result = schema_validator(schema, data)


assert bool(result) is False
assert result.type_errors == [{'path': 'profile.age', 'expected': int, 'actual': str}]

Optional types

The schema validator support optional types.

You can do the following:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[int]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': 'some_string'
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is True
assert bool(schema_validator(schema, data_3)) is False

Additionally, you can define optional branches in the schema:

from simple_schema_validator import schema_validator, types

schema = {
  'a': types.Optional[{
    'b': int
  }]
}

data_1 = {
  'a': None
}

data_2 = {
  'a': 1
}

data_3 = {
  'a': {
    'b': 1
  }
}

data_4 = {
  'a': {
    'b': 'some_string'
  }
}

assert bool(schema_validator(schema, data_1)) is True
assert bool(schema_validator(schema, data_2)) is False
assert bool(schema_validator(schema, data_3)) is True
assert bool(schema_validator(schema, data_4)) is False

Examples

For examples, check the examples folder or the tests for the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_schema_validator-0.0.8.tar.gz (6.3 kB view details)

Uploaded Source

Built Distribution

simple_schema_validator-0.0.8-py2.py3-none-any.whl (8.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file simple_schema_validator-0.0.8.tar.gz.

File metadata

  • Download URL: simple_schema_validator-0.0.8.tar.gz
  • Upload date:
  • Size: 6.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.8.tar.gz
Algorithm Hash digest
SHA256 baf6db4b9bc31b6543d817a594dd3ab2ad0d3583f758df42830baad6265494d7
MD5 d8f7cb06eaeb1df0b32508d2f807d182
BLAKE2b-256 33ead958e1b31804d2597ebf6f2311934491b9a6fadce1e68c02007ef43372a5

See more details on using hashes here.

File details

Details for the file simple_schema_validator-0.0.8-py2.py3-none-any.whl.

File metadata

  • Download URL: simple_schema_validator-0.0.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for simple_schema_validator-0.0.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 af180cf17452eb09990335f70ecb7f66d19923b7a2640aa513c45b764f4ef509
MD5 f838271f1e7d8e65a60ef4750ee4734f
BLAKE2b-256 12f3fd6e0012d8e1b3f2a0dafd5080f4ff22111576846197845504a459ebe09d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page