Skip to main content

Python library to interact with Smartsheet API

Project description

Simple Smartsheet

Python library to interact with Smartsheet API easily

Installation

Requires Python 3.6+
pip install simple-smartsheet

Why not smartsheet-python-sdk

smartsheet-python-sdk has very wide object coverage and maps to Smartsheet API very nicely, but it does not have some convenience features (for example, easy access to cells by column titles).
simple-smartsheet library is focused on the user experience in expense of feature coverage. As of now, you can only interact with Sheets and Reports and their children objects (rows, columns, cells).
Additionally, simple-smartsheet supports asyncio and provides both sync and async API at the same time.

Usage

import os
from datetime import date
from pprint import pprint

from simple_smartsheet import Smartsheet
from simple_smartsheet.models import Sheet, Column, Row, Cell, ColumnType

TOKEN = os.getenv("SMARTSHEET_API_TOKEN")
SHEET_NAME = "[TEST] My New Sheet"
smartsheet = Smartsheet(TOKEN)

# retrieve a list of sheets (limited set of attributes)
sheets = smartsheet.sheets.list()
pprint(sheets)

# delete the test sheet if already exists
for sheet in sheets:
    if sheet.name == SHEET_NAME:
        smartsheet.sheets.delete(id=sheet.id)

# create a new Sheet
new_sheet_skeleton = Sheet(
    name=SHEET_NAME,
    columns=[
        Column(primary=True, title="Full Name", type=ColumnType.TEXT_NUMBER),
        Column(title="Number of read books", type=ColumnType.TEXT_NUMBER),
        Column(title="Birth date", type=ColumnType.DATE),
        Column(title="Library member", type=ColumnType.CHECKBOX),
    ],
)

# print the sheet object attributes used by the Smartsheet API (camelCase)
pprint(new_sheet_skeleton.dump())

# add the sheet via API
result = smartsheet.sheets.create(new_sheet_skeleton)
sheet = result.obj
print(f"ID of the created sheet is {sheet.id!r}")

# retrieve a sheet by name
# this object is exactly the same as result.obj
sheet = smartsheet.sheets.get(SHEET_NAME)

# get columns details by column title (case-sensitive)
full_name_column = sheet.get_column("Full Name")
pprint(full_name_column.__dict__)
num_books_column = sheet.get_column("Number of read books")
pprint(num_books_column.__dict__)

# add rows (cells are created using different ways)
# second way is the easiest
new_rows = [
    Row(
        to_top=True,
        cells=[
            Cell(column_id=full_name_column.id, value="Alice Smith"),
            Cell(column_id=num_books_column.id, value=5),
        ],
    ),
    Row(
        to_top=True,
        cells=sheet.make_cells(
            {"Full Name": "Bob Lee", "Number of read books": 2}
        ),
    ),
    Row(
        to_top=True,
        cells=[
            sheet.make_cell("Full Name", "Charlie Brown"),
            sheet.make_cell("Number of read books", 1),
            sheet.make_cell("Birth date", date(1990, 1, 1)),
        ],
    ),
]
smartsheet.sheets.add_rows(sheet.id, new_rows)

# sort rows by column "Full Name" descending / returns updated sheet
sheet = smartsheet.sheets.sort_rows(
    sheet, [{"column_title": "Full Name", "descending": True}]
)

print("\nSheet after adding rows:")
# print a list of dictionaries containing column titles and values for each row
pprint(sheet.as_list())

# get a specific cell and updating it:
row_id_to_delete = None
rows_to_update = []
for row in sheet.rows:
    full_name = row.get_cell("Full Name").value
    num_books = row.get_cell("Number of read books").value
    print(f"{full_name} has read {num_books} books")
    if full_name.startswith("Charlie"):
        updated_row = Row(
            id=row.id, cells=[sheet.make_cell("Number of read books", 15)]
        )
        rows_to_update.append(updated_row)
    elif full_name.startswith("Bob"):
        row_id_to_delete = row.id  # used later

# update rows
smartsheet.sheets.update_rows(sheet.id, rows_to_update)
# or a single row
# smartsheet.sheets.update_row(sheet.id, rows_to_update[0])

# get an updated sheet
sheet = smartsheet.sheets.get(id=sheet.id)
print("\nSheet after updating rows:")
pprint(sheet.as_list())

# delete a row
smartsheet.sheets.delete_row(sheet.id, row_id_to_delete)

# get an updated sheet
sheet = smartsheet.sheets.get(id=sheet.id)
print("\nSheet after deleting rows:")
pprint(sheet.as_list())

# delete a sheet by name
smartsheet.sheets.delete(SHEET_NAME)
sheets = smartsheet.sheets.list()
pprint(sheets)

API reference

While a separate docs page is work in progress, available public API is described here

Class simple_smartsheet.Smartsheet

This class a main entry point for the library
Methods:

  • def __init__(token: str): constructor for the class

Attributes:

  • token: Smartsheet API token, obtained in Personal Settings -> API access
  • sheets: simple_smartsheet.models.sheet.SheetCRUD object which provides methods to interact with sheets
  • reports: simple_smartsheet.models.report.ReportCRUD object which provides methods to interact with reports

Class simple_smartsheet.models.sheet.SheetCRUD

Methods:

  • def get(name: Optional[str], id: Optional[int]) -> Sheet: fetches Sheet by name or ID.
  • def list() -> List[Sheet]: fetches a list of all sheets (summary only)
  • def create(obj: Sheet) -> Result: adds a new sheet
  • def update(obj: Sheet) -> Result: updates a sheet
  • def delete(name: Optional[str], id: Optional[int]) -> Result: deletes a sheet by name or ID
  • def add_rows(sheet_id: int, rows: Sequence[Row]) -> Result: adds rows to the sheet
  • def add_row(sheet_id: int, row: Row) -> Result: add a single row to the sheet
  • def update_rows(sheet_id: int, rows: Sequence[Row]) -> Result: updates several rows in the sheet
  • def update_row(sheet_id: int, row: Row) -> Result: updates a single row
  • def delete_rows(sheet_id: int, row_ids: Sequence[int]) -> Result: deletes several rows with provided ids
  • def delete_row(sheet_id: int, row_id: int) -> Result: deletes a single row with a provided id
  • def sort_rows(sheet: Sheet, order: List[Dict[str, Any]]) -> Sheet: sorts sheet rows with the specified order, e.g.:
sheet.sort_rows([
    {"column_title": "Birth date", "descending": True},
    {"column_title": "Full Name"}
])

Class simple_smartsheet.models.sheet.AsyncSheetCRUD

The methods listed below are asynchronous version of methods in SheetCRUD, listed for completeness:

  • async def get(name: Optional[str], id: Optional[int]) -> Sheet
  • async def list() -> List[Sheet]
  • async def create(obj: Sheet) -> Result
  • async def update(obj: Sheet) -> Result
  • async def delete(name: Optional[str], id: Optional[int]) -> Result
  • async def add_rows(sheet_id: int, rows: Sequence[Row]) -> Result
  • async def add_row(sheet_id: int, row: Row) -> Result
  • async def update_rows(sheet_id: int, rows: Sequence[Row]) -> Result
  • async def update_row(sheet_id: int, row: Row) -> Result
  • async def delete_rows(sheet_id: int, row_ids: Sequence[int]) -> Result
  • async def delete_row(sheet_id: int, row_id: int) -> Result
  • async def sort_rows(sheet: Sheet, order: List[Dict[str, Any]]) -> Sheet

Class simple_smartsheet.models.Sheet

Attributes (converted from camelCase to snake_case):

Methods:

  • def get_row(row_num: Optional[int], row_id: Optional[int], filter: Optional[Dict[str, Any]]) -> Optional[Row]: returns a Row object by row number, ID or by filter, if a unique index was built (see section "Custom Indexes")
  • def get_rows(index_query: Dict[str, Any]) -> List[Row]: returns list of Row objects by filter, if an index was built (see section "Custom Indexes")
  • def get_column(column_title: Optional[str], column_id: Optional[int]) -> Column: returns a Column object by column title or id
  • def build_index(indexes: List[IndexKeysDict]) -> None: builds one or more indexes for quick row lookup using get_row or get_rows, e.g.:
sheet.build_index([
    {"columns": ("Company Name",), "unique": False},
    {"columns": ("Company Name", "Full Name"), "unique": True}
])
  • def make_cell(column_title: str, field_value: Union[float, str, datetime, None]) -> Cell: creates a Cell object with provided column title and an associated value
  • def make_cells(fields: Dict[str, Union[float, str, datetime, None]]) -> List[Cell]: creates a list of Cell objects from an input dictionary where column title is key associated with the field value
  • def as_list() -> List[Dict[str, Any]]: returns a list of dictionaries where column title is key associated with the field value

Class simple_smartsheet.models.row.Row

Attributes (converted from camelCase to snake_case):

Methods:

  • def get_cell(column_title: Optional[str], column_id: Optional[int]) -> Cell - returns a Cell object by column title (case-sensitive) or column id
  • def as_dict() -> Dict[str, Any] - returns a dictionary of column title to cell value mappings

Class simple_smartsheet.models.column.Column

Attributes (converted from camelCase to snake_case):

Class simple_smartsheet.models.cell.Cell

Attributes (converted from camelCase to snake_case):

Class simple_smartsheet.models.extra.Result:

Attributes (converted from camelCase to snake_case):

Class simple_smartsheet.models.Report

Attributes (converted from camelCase to snake_case):

Implements the following Sheet methods:

  • def get_row(row_num: Optional[int], row_id: Optional[int], filter: Optional[Dict[str, Any]]) -> ReportRow: returns a ReportRow object by row number, ID or by filter, if a unique index was built (see section "Custom Indexes")
  • def get_rows(index_query: Dict[str, Any]) -> List[ReportRow]: returns list of ReportRow objects by filter, if an index was built (see section "Custom Indexes")
  • def get_column(column_title: Optional[str], column_id: Optional[int]) -> ReportColumn: returns a ReportColumn object by column title or id
  • def build_index(indexes: List[IndexKeysDict]) -> None: builds one or more indexes for quick row lookup using get_row or get_rows, e.g.:
sheet.build_index([
    {"columns": ("Company Name",), "unique": False},
    {"columns": ("Company Name", "Full Name"), "unique": True}
])
  • def as_list() -> List[Dict[str, Any]]: returns a list of dictionaries where column title is key associated with the field value

Custom Indexes

It is possible to build indexes to enable quick rows lookups for sheets and reports. For this, after retrieving the sheet, call sheet.build_index function. It takes only one argument: a list of dictionaries, where every dictionary has two keys columns and unique. columns should contain a tuple with column titles (case sensitive). unique controls if the index always points to a single row (value True, lookups are done using get_row method) or multiple rows (value False, lookups are done using get_rows method).

Below you can find a code snippet (see the full example in examples/custom_indexes.py):

INDEXES = [
    {"columns": ("Company",), "unique": False},
    {"columns": ("Company", "Full Name"), "unique": True},
    {"columns": ("Email address",), "unique": True},
]
sheet = smartsheet.sheets.get("[TEST] Index Sheet")
sheet.build_index(INDEXES)

print("\nRow where email address is 'charlie.brown@globex.com':")
print(sheet.get_row(filter={"Email Address": "charlie.brown@globex.com"}).as_dict())
# >
# {'Company Name': 'Globex',
#  'Email Address': 'charlie.brown@globex.com',
#  'Full Name': 'Charlie Brown'}

print("\nRows where the company name is 'ACME':")
print([row.as_dict() for row in sheet.get_rows(filter={"Company Name": "ACME"})])
# >
# [{'Company Name': 'ACME',
#   'Email Address': 'alice.smith@acme.com',
#   'Full Name': 'Alice Smith'},
#  {'Company Name': 'ACME',
#   'Email Address': 'bob.lee@acme.com',
#   'Full Name': 'Bob Lee'}]

Asyncio

The library supports asyncio for all i/o methods, instead of calling:

smartsheet = Smartsheet(token)
sheet = smartsheets.sheets.get('my-sheet')

you need to call asynchronous context manager with an async version of smartsheet class:

with AsyncSmartsheet(token) as smartsheet:
   sheet = await smartsheet.sheets.get('my-sheet')

A complete asyncio example with different operations on sheets and reports can be found in examples/async.py

Pandas

If pandas is installed (either separately or as extras pip install simple-smartsheet[pandas]), sheets and rows can be exported as pandas.DataFrame or pandas.Series respectively. Besides column titles and respective values from the sheet, they will also include row IDs and row numbers

sheet = smartsheets.sheets.get('my-sheet')
df = sheet.as_dataframe()
series = sheet.rows[0].as_series()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple-smartsheet-0.5.0.tar.gz (25.1 kB view details)

Uploaded Source

Built Distribution

simple_smartsheet-0.5.0-py3-none-any.whl (27.4 kB view details)

Uploaded Python 3

File details

Details for the file simple-smartsheet-0.5.0.tar.gz.

File metadata

  • Download URL: simple-smartsheet-0.5.0.tar.gz
  • Upload date:
  • Size: 25.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.9 Darwin/18.7.0

File hashes

Hashes for simple-smartsheet-0.5.0.tar.gz
Algorithm Hash digest
SHA256 86b72599c111b994b630b2a81b46a2c7f7827cf5fb81eea6aa05b25dd898802d
MD5 f794ea1d6ab41038de80bc0ed500cb3f
BLAKE2b-256 222a10ea16179fbac3d613dba4b72bfdf9a7e535124f62f45385cc7b762a1699

See more details on using hashes here.

File details

Details for the file simple_smartsheet-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for simple_smartsheet-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 75c0244061a00a6b113452d978c22a9e48be23a6fbb86018fe9876b8da19da53
MD5 b9353ac954d38bc8c554c4c3bccfd454
BLAKE2b-256 899d25474d25d47f2d420da3f4ec1556a0ce9fc3c03c83bcd49afec1a885899d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page