Skip to main content

very simple model framework

Project description

https://travis-ci.org/AFriemann/simple_model.svg?branch=master https://badge.fury.io/py/simple_model.svg

As the name suggests, this is a very simple model framework. It can be used for data validation and (de-)serialization.

Installation

Install with pip:

$ pip install --user simple_model

Usage

This allows me to test the examples by taking care of sorting the dictionaries, it is not required for simple_model to work:

>>> from pprint import pprint

Examples:

>>> from simple_model import Model, Attribute

>>> class Data(Model):
...     name = Attribute(str)
...     some_value = Attribute(str, optional=True)
...     another_value = Attribute(int, fallback=0)

>>> pprint(dict(Data(name = 'test', some_value = None, another_value = 12)))
{'another_value': 12, 'name': 'test', 'some_value': None}

>>> pprint(dict(Data(name = 'test')))
{'another_value': 0, 'name': 'test', 'some_value': None}

>>> init_dict = {'name': 'test', 'some_value': 'val', 'another_value': 3}
>>> pprint(dict(Data(**init_dict)))
{'another_value': 3, 'name': 'test', 'some_value': 'val'}

Initializing with missing attributes while not specifying them as optional or providing a fallback value will result in a ValueError containing all failed attributes. Note that fallback takes precedence over optional, specifying both is unnecessary.

Unknown values will be ignored:

>>> pprint(dict(Data(name = 'test', unknown_value = True)))
{'another_value': 0, 'name': 'test', 'some_value': None}

Serialization can be achieved easily, for example:

>>> import json
>>> def serialize(model):
...     return json.dumps(dict(model))

>>> def deserialize(string):
...     return Data(**json.loads(string))

Since the Model class simply calls the Attribute class for each parameter and the Attribute class in turn calls the given ‘type’, one could easily use functions instead of types to achieve more complex results and value parsing:

>>> from datetime import datetime
>>> def parse_date(string):
...     return datetime.strptime(string, '%Y-%m-%d')

>>> class Data(Model):
...     date = Attribute(parse_date)

>>> dict(Data(date='2015-11-20'))
{'date': datetime.datetime(2015, 11, 20, 0, 0)}

Fallback values can also be given as functions

>>> def fun():
...     return "foo"

>>> class Data(Model):
...     point = Attribute(str, fallback=fun)

>>> dict(Data())
{'point': 'foo'}

If you need to verify Lists of objects, use functions:

>>> class Data(Model):
...     points = Attribute(lambda l: list(map(str, l)))

>>> dict(Data(points=['abc', 'def', 'ghi']))
{'points': ['abc', 'def', 'ghi']}

Or the included list_type helper class:

>>> from simple_model import list_type
>>> class Data(Model):
...     points = Attribute(list_type(str))

>>> dict(Data(points=['abc', 'def', 'ghi']))
{'points': ['abc', 'def', 'ghi']}

For more complex data, use Models to verify:

>>> class SubData(Model):
...     some_value = Attribute(str)
...     some_other_value = Attribute(int)

>>> class Data(Model):
...     point = Attribute(SubData)

>>> pprint(dict(Data(point={'some_value': 'abc', 'some_other_value': 12})))
{'point': {'some_other_value': 12, 'some_value': 'abc'}}

To allow uncommon names, use the Attribute name kwarg:

>>> class Data(Model):
...     point = Attribute(str, name='@point')

>>> dict(Data(point='something'))
{'@point': 'something'}

>>> dict(Data(**{ '@point': 'something' }))
{'@point': 'something'}

Tests

To run the tests use tox:

$ tox

Or run py.test manually (not recommended, needs simple_module installed):

$ py.test .

Changelog

1.0.1

  • Model will now raise ValueError for failed attributes with a list instead of a string.

  • Attributes now allow an alias as keyword argument.

1.0.0

  • removed the AttributeList class, use functions instead.

  • Model Attributes can now be named. To allow this we keep the Attribute object and store the value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple_model-1.0.1.tar.gz (4.8 kB view details)

Uploaded Source

File details

Details for the file simple_model-1.0.1.tar.gz.

File metadata

File hashes

Hashes for simple_model-1.0.1.tar.gz
Algorithm Hash digest
SHA256 19c97e24e14db15dd492e310ac124008be46b349416339743768472e30e266d2
MD5 538f0ba3e114e5d46aa5bc61e1bf2f5c
BLAKE2b-256 831d6a01974756d33549a5b8dafcd21b31c4f3fc7b077c60d8d9617b5ccc12f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page