Skip to main content

Functions for bounding box processing

Project description

SimpleBBox

https://img.shields.io/pypi/v/simplebbox.svg https://img.shields.io/travis/serge-m/simplebbox.svg Documentation Status

Functions for bounding box processing.

In many computer vision tasks a concept of a bounding box is used. In python bounding boxes are often represented as lists, tuples or numpy arrays of 4 elements. However there is no standard representation and different formats are used. Some formats are listed below.

  • (min x, min y, width, height) or (left, top, width, height)

  • (min x, min y, max x, max y) or (left, top, bottom, right)

  • (center x, center y, width, height)

The coordinates can represent either

  • relative position in the image dimensions. Then x takes values from 0..1 for pixels inside the image

  • or absolute position in pixel (either integer or floating point numbers)

This package contains utility functions to convert between those formats.

Basic assumptions

Simple data structures are used: lists, tuples, numpy arrays. They fit well to the output of the deep learning models. Speed and simplicity is chosen over type and range safety. For better type safety one can use alternative implementations with classes. See alternatives page of the docs.

Conversion operations between integer and float numbers are sometimes cumbersome. We are trying to keep it aligned with standard python. For example rounding of float numbers while computing a center of a bounding box is done using Round_half_to_even algorithm.

Several functions for different handing of floats/ints are provided for the same operation. E.g. cxcywh_to_x0y0wh_float, cxcywh_to_x0y0wh_int

In simple use cases like a single conversion from one format to another one can probably chose any of the versions for float conversions. More thorough selection is needed in case of multiple back and forth conversions.

Installation

pip install simplebbox

Usage example

Examples of conversions:

from simplebbox.array import x0y0wh_to_x0y0x1y1, x0y0x1y1_to_x0y0wh

# convert bbox represented as list in ltwh format:
x0y0wh_to_x0y0x1y1([100, 200, 10, 20])          # [100, 200, 110, 220]

# and convert it back:
x0y0x1y1_to_x0y0wh([100, 200, 110, 220])        # [100, 200, 10, 20]

Notes

History

0.0.9 (2021-03-02)

  • implementation of batch processing for torch and numpy

  • simplification of float/int conversions, merged some tests for array/tensor implementations

  • reworked a conversion with integer divisions

Interfaces (and names) of array processing functions have changed. This is a breaking change.

0.0.7 (2020-12-17)

  • Added conversion between relative and absolute coordinates.

0.0.6 (2020-12-17)

  • Implemented basic conversions. Updated documentation, tests.

0.0.1 (2020-12-16)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simplebbox-0.0.10.tar.gz (14.5 kB view details)

Uploaded Source

Built Distribution

simplebbox-0.0.10-py2.py3-none-any.whl (7.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file simplebbox-0.0.10.tar.gz.

File metadata

  • Download URL: simplebbox-0.0.10.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.1.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.3

File hashes

Hashes for simplebbox-0.0.10.tar.gz
Algorithm Hash digest
SHA256 29bbb4799d189357b91bb094eef3a7b2153d36466e5f44236db2599c66fdf383
MD5 912119497c1c0322f57df43bfb56d7a2
BLAKE2b-256 7fcc99e8cafbd142c2fdfbaf48bf9db402d9a1bf76b3ca291376edc3856303dc

See more details on using hashes here.

File details

Details for the file simplebbox-0.0.10-py2.py3-none-any.whl.

File metadata

  • Download URL: simplebbox-0.0.10-py2.py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/54.1.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.3

File hashes

Hashes for simplebbox-0.0.10-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c7f0f57e7b309008a4674fc9c93ed134b437e9073f90ab518522fcbf2427fbbe
MD5 c476fa856468e715e1a90792371ceec7
BLAKE2b-256 33519c9dd54f089c30c08957b6356cdab5e49fbb05bce7bc7e9a9ab2171f5c0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page