Skip to main content

Simple version of the Iterative Closest Point (ICP) algorithm

Project description

simpleICP

This package contains an implementation of a rather simple version of the Iterative Closest Point (ICP) algorithm.

Documentation

This python implementation is just one of several (almost identical) implementations of the ICP algorithm in various programming languages. They all share a common documentation here: https://github.com/pglira/simpleICP

Installation

You can install the simpleicp package from PyPI:

pip install simpleicp

How to use

from simpleicp import PointCloud, SimpleICP
import numpy as np

# Read point clouds from xyz files into n-by-3 numpy arrays
X_fix = np.genfromtxt("bunny_part1.xyz")
X_mov = np.genfromtxt("bunny_part2.xyz")

# Create point cloud objects
pc_fix = PointCloud(X_fix, columns=["x", "y", "z"])
pc_mov = PointCloud(X_mov, columns=["x", "y", "z"])

# Create simpleICP object, add point clouds, and run algorithm!
icp = SimpleICP()
icp.add_point_clouds(pc_fix, pc_mov)
H, X_mov_transformed = icp.run(max_overlap_distance=1)

This should give this output:

Consider partial overlap of point clouds ...
Select points for correspondences in fixed point cloud ...
Estimate normals of selected points ...
Start iterations ...
iteration | correspondences | mean(residuals) |  std(residuals)
   orig:0 |             951 |          0.0401 |          0.2397
        1 |             950 |          0.0027 |          0.1356
        2 |             889 |          0.0026 |          0.0586
        3 |             897 |          0.0020 |          0.0407
        4 |             873 |          0.0004 |          0.0303
        5 |             854 |          0.0004 |          0.0245
        6 |             847 |          0.0003 |          0.0208
        7 |             826 |         -0.0006 |          0.0154
        8 |             799 |          0.0005 |          0.0099
        9 |             787 |          0.0002 |          0.0068
       10 |             783 |         -0.0001 |          0.0047
       11 |             779 |         -0.0001 |          0.0037
       12 |             776 |         -0.0000 |          0.0033
       13 |             776 |         -0.0000 |          0.0033
Convergence criteria fulfilled -> stop iteration!
Estimated transformation matrix H:
[    0.984804    -0.173671    -0.000041     0.000420]
[    0.173671     0.984804     0.000051    -0.000750]
[    0.000032    -0.000057     1.000000     0.000054]
[    0.000000     0.000000     0.000000     1.000000]
... which corresponds to the following rigid body transformation parameters:
parameter |       est.value | est.uncertainty |       obs.value |      obs.weight
   alpha1 |       -0.002906 |        0.004963 |        0.000000 |        0.000000
   alpha2 |       -0.002353 |        0.002339 |        0.000000 |        0.000000
   alpha3 |       10.001317 |        0.006276 |        0.000000 |        0.000000
       tx |        0.000420 |        0.000459 |        0.000000 |        0.000000
       ty |       -0.000750 |        0.000974 |        0.000000 |        0.000000
       tz |        0.000054 |        0.000209 |        0.000000 |        0.000000
(Unit of est.value, est.uncertainty, and obs.value for alpha1/2/3 is degree)
Finished in 4.320 seconds!

Note that bunny_part1.xyz and bunny_part2.xyz are not included in this package. They can be downloaded (among other example files) here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simpleicp-2.0.0.tar.gz (13.1 kB view details)

Uploaded Source

Built Distribution

simpleicp-2.0.0-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file simpleicp-2.0.0.tar.gz.

File metadata

  • Download URL: simpleicp-2.0.0.tar.gz
  • Upload date:
  • Size: 13.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for simpleicp-2.0.0.tar.gz
Algorithm Hash digest
SHA256 c0ea43e3daa1544154bf90c2484dc3a2d4b142c39dafb3a8c0f3b50b1b937057
MD5 a908f1e31ffc5171e270124bbe54ccdc
BLAKE2b-256 060a6444eec30538aabf2168d60b0603aa9824c753c0eb0ba12b1fb782bcfe63

See more details on using hashes here.

File details

Details for the file simpleicp-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: simpleicp-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 14.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for simpleicp-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1e542cd7da8a3075c851f9ca23df28f5ab9b4afcd19a6fb188f9547ce9e2fe75
MD5 beafdab40ae02ed903fb13176c0948a4
BLAKE2b-256 255c1448c624f3836adab1685cd8967a173d59215e0b60936b81f4679d18042f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page