Skip to main content

Simple version of the Iterative Closest Point (ICP) algorithm

Project description

simpleICP

This package contains an implementation of a rather simple version of the Iterative Closest Point (ICP) algorithm.

Documentation

This python implementation is just one of several (almost identical) implementations of the ICP algorithm in various programming languages. They all share a common documentation here: https://github.com/pglira/simpleICP

Installation

You can install the simpleicp package from PyPI:

pip install simpleicp

How to use

from simpleicp import PointCloud, SimpleICP
import numpy as np

# Read point clouds from xyz files into n-by-3 numpy arrays
X_fix = np.genfromtxt("bunny_part1.xyz")
X_mov = np.genfromtxt("bunny_part2.xyz")

# Create point cloud objects
pc_fix = PointCloud(X_fix, columns=["x", "y", "z"])
pc_mov = PointCloud(X_mov, columns=["x", "y", "z"])

# Create simpleICP object, add point clouds, and run algorithm!
icp = SimpleICP()
icp.add_point_clouds(pc_fix, pc_mov)
H, X_mov_transformed, rigid_body_transformation_params = icp.run(max_overlap_distance=1)

This should give this output:

Consider partial overlap of point clouds ...
Select points for correspondences in fixed point cloud ...
Estimate normals of selected points ...
Start iterations ...
iteration | correspondences | mean(residuals) |  std(residuals)
   orig:0 |             951 |          0.0401 |          0.2397
        1 |             950 |          0.0027 |          0.1356
        2 |             889 |          0.0026 |          0.0586
        3 |             897 |          0.0020 |          0.0407
        4 |             873 |          0.0004 |          0.0303
        5 |             854 |          0.0004 |          0.0245
        6 |             847 |          0.0003 |          0.0208
        7 |             826 |         -0.0006 |          0.0154
        8 |             799 |          0.0005 |          0.0099
        9 |             787 |          0.0002 |          0.0068
       10 |             783 |         -0.0001 |          0.0047
       11 |             779 |         -0.0001 |          0.0037
       12 |             776 |         -0.0000 |          0.0033
       13 |             776 |         -0.0000 |          0.0033
Convergence criteria fulfilled -> stop iteration!
Estimated transformation matrix H:
[    0.984804    -0.173671    -0.000041     0.000420]
[    0.173671     0.984804     0.000051    -0.000750]
[    0.000032    -0.000057     1.000000     0.000054]
[    0.000000     0.000000     0.000000     1.000000]
... which corresponds to the following rigid body transformation parameters:
parameter |       est.value | est.uncertainty |       obs.value |      obs.weight
   alpha1 |       -0.002906 |        0.004963 |        0.000000 |        0.000000
   alpha2 |       -0.002353 |        0.002339 |        0.000000 |        0.000000
   alpha3 |       10.001317 |        0.006276 |        0.000000 |        0.000000
       tx |        0.000420 |        0.000459 |        0.000000 |        0.000000
       ty |       -0.000750 |        0.000974 |        0.000000 |        0.000000
       tz |        0.000054 |        0.000209 |        0.000000 |        0.000000
(Unit of est.value, est.uncertainty, and obs.value for alpha1/2/3 is degree)
Finished in 4.320 seconds!

Note that bunny_part1.xyz and bunny_part2.xyz are not included in this package. They can be downloaded (among other example files) here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simpleicp-2.0.10.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

simpleicp-2.0.10-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file simpleicp-2.0.10.tar.gz.

File metadata

  • Download URL: simpleicp-2.0.10.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for simpleicp-2.0.10.tar.gz
Algorithm Hash digest
SHA256 bec726b8c98fa8c352bc9b72d1b5e93ccef03a9921c3d181b281c2a575a17b3b
MD5 27d3cf6a618607441d33e77ec641ba51
BLAKE2b-256 4e5acfe631031e63021c39e88e407b722a652cd3a4c1773943c1ff9329ef278f

See more details on using hashes here.

File details

Details for the file simpleicp-2.0.10-py3-none-any.whl.

File metadata

  • Download URL: simpleicp-2.0.10-py3-none-any.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for simpleicp-2.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 f82de22150ebbe471c8ddff97dca685bab5e124cd557221e1c27c1769c8b7efe
MD5 c83a6b48034f0d98c28bffa27bf31b22
BLAKE2b-256 9f440745b5121acb328e9adb0249bd79ebf6e6703bf9d876d38f1d85bd6a61cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page