A clean and easy interface for nearest-neighbors lookup
Project description
Simple Neighbors
Simple Neighbors is a clean and easy interface for performing nearest-neighbor lookups on items from a corpus. For example, here’s how to find the most similar color to a color in the xkcd colors list:
>>> from simpleneighbors import SimpleNeighbors >>> import json >>> color_data = json.load(open('xkcd.json'))['colors'] >>> hex2int = lambda s: [int(s[n:n+2], 16) for n in range(1,7,2)] >>> colors = [(item['color'], hex2int(item['hex'])) for item in color_data] >>> sim = SimpleNeighbors(3) >>> sim.feed(colors) >>> sim.build() >>> list(sim.neighbors('pink', 5)) ['pink', 'bubblegum pink', 'pale magenta', 'dark mauve', 'light plum']
Read the documentation here: https://simpleneighbors.readthedocs.org.
Approximate nearest-neighbor lookups are a quick way to find the items in your data set that are closest (or most similar to) any other item in your data, or an arbitrary point in the space that your data defines. Your data items might be colors in a (R, G, B) space, or sprites in a (X, Y) space, or word vectors in a 300-dimensional space.
You could always perform pairwise distance calculations to find nearest neighbors in your data, but for data of any appreciable size and complexity, this kind of calculation is unbearably slow. This library uses Annoy behind the scenes for approximate nearest-neighbor lookups, which are ultimately a little less accurate than pairwise calculations but much, much faster.
The library also keeps track of your data, sparing you the extra step of mapping each item in your data to its integer index in Annoy (at the potential cost of some redundancy in data storage, depending on your application).
I made Simple Neighbors because I use Annoy all the time and found myself writing and rewriting the same bits of wrapper code over and over again. I wanted to hide a little bit of the complexity of using Annoy to make it easier to build small prototypes and teach workshops using nearest-neighbor lookups.
Installation
Install with pip like so:
pip install simpleneighbors
You can also download the source code and install manually:
python setup.py install
History
0.0.1 (2018-07-13)
Initial release.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file simpleneighbors-0.0.1.tar.gz
.
File metadata
- Download URL: simpleneighbors-0.0.1.tar.gz
- Upload date:
- Size: 13.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f74562ab6dee49c98cba5ee0feb36bd6d38d49979f04f1775abba1672a99520 |
|
MD5 | 56a175af44f6ab572634524bf3f6aa47 |
|
BLAKE2b-256 | 0c05e0d0876a71c72878d76db6ed7f007af6346a2fcf6be714b71b64ef60bd97 |
File details
Details for the file simpleneighbors-0.0.1-py2.py3-none-any.whl
.
File metadata
- Download URL: simpleneighbors-0.0.1-py2.py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 985402585d63859867d67a9d9527653ee6760b7db77bc9f2d52e5093437a4829 |
|
MD5 | 42b52ad37e69fbd32a0fb3dee5296fd5 |
|
BLAKE2b-256 | a28eb8ca38e4305bdf5c4cac5d9bf4b65022a2d3641a978b28ce92f9e4063c7b |