Python implementation of SimplePPT algorithm, with GPU acceleration
Project description
SimplePPT
Python implementation of SimplePPT algorithm, with GPU acceleration.
Please cite the following paper if you use it:
Mao et al. (2015), SimplePPT: A simple principal tree algorithm, SIAM International Conference on Data Mining.
Installation
pip install -U simpleppt
Usage
from sklearn.datasets import make_classification
import simpleppt
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,
n_clusters_per_class=1, n_classes=3)
ppt=simpleppt.ppt(X1,Nodes=30,seed=1,progress=False,lam=10)
simpleppt.project_ppt(ppt,X1, c=Y1)
GPU dependencies (optional)
If you have a nvidia GPU, simpleppt can leverage CUDA computations for speedup in tree inference. The latest version of rapids framework is required (at least 0.17) it is recommanded to create a new conda environment:
conda create -n SimplePPT-gpu -c rapidsai -c nvidia -c conda-forge -c defaults \
rapids=0.19 python=3.8 cudatoolkit=11.0 -y
conda activate SimplePPT-gpu
pip install simpleppt
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
simpleppt-1.1.4.tar.gz
(11.8 kB
view details)
Built Distribution
simpleppt-1.1.4-py3-none-any.whl
(72.3 kB
view details)
File details
Details for the file simpleppt-1.1.4.tar.gz
.
File metadata
- Download URL: simpleppt-1.1.4.tar.gz
- Upload date:
- Size: 11.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 883fab81d0e296b3c0528d8356f6bcc37e3fd9b47e02d004ccce87811d5b13bb |
|
MD5 | 6ea6107b10ab2597a9d6099506013171 |
|
BLAKE2b-256 | 08af6aa7319850a3cce5ab95eb1723ff5a87d3869ab88e5ecf242099d582cb81 |
File details
Details for the file simpleppt-1.1.4-py3-none-any.whl
.
File metadata
- Download URL: simpleppt-1.1.4-py3-none-any.whl
- Upload date:
- Size: 72.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5d5d2f05a2491641f858db93904cb37103799dfa1346e508316b5e50d415059 |
|
MD5 | 77b52952a63c4e737d4625118f52d4dd |
|
BLAKE2b-256 | 1eb69c863da1255081df7cc8744b5070da3386a21ee4d0d72cb3973c255a5e91 |