Python implementation of SimplePPT algorithm, with GPU acceleration
Project description
SimplePPT
Python implementation of SimplePPT algorithm, with GPU acceleration.
Please cite the following paper if you use it:
Mao et al. (2015), SimplePPT: A simple principal tree algorithm, SIAM International Conference on Data Mining.
Installation
pip install -U simpleppt
Usage
from sklearn.datasets import make_classification
import simpleppt
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,
n_clusters_per_class=1, n_classes=3)
ppt=simpleppt.ppt(X1,Nodes=30,seed=1,progress=False,lam=10)
simpleppt.project_ppt(ppt,X1, c=Y1)
GPU dependencies (optional)
If you have a nvidia GPU, simpleppt can leverage CUDA computations for speedup in tree inference. The latest version of rapids framework is required (at least 0.17) it is recommanded to create a new conda environment:
conda create -n SimplePPT-gpu -c rapidsai -c nvidia -c conda-forge -c defaults \
rapids=0.19 python=3.8 cudatoolkit=11.0 -y
conda activate SimplePPT-gpu
pip install simpleppt
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
simpleppt-1.0.tar.gz
(33.5 kB
view details)
Built Distribution
File details
Details for the file simpleppt-1.0.tar.gz
.
File metadata
- Download URL: simpleppt-1.0.tar.gz
- Upload date:
- Size: 33.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6785d9798fc7bb5243a3e249668c92211a86eb9279cc48229503e6e89355ad0 |
|
MD5 | 2fb23ad3beeb2aa8a1ae079664947bad |
|
BLAKE2b-256 | 4979f31602387e81532a0cb85c0910df2ea791d4b4322ba30d3a6bfa4c5e55bd |
File details
Details for the file simpleppt-1.0-py3-none-any.whl
.
File metadata
- Download URL: simpleppt-1.0-py3-none-any.whl
- Upload date:
- Size: 9.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69c7151aede8f7ba87c12ace4fec462a13adf4eed6597c1dd3f90c6f50799749 |
|
MD5 | be0e154d86a9cda7ef5cb0e10f031e5d |
|
BLAKE2b-256 | 06b31a6a7479a1b61dfd5311c9322fb1e0db58484be7bee7fccaf7890573127f |