Python implementation of SimplePPT algorithm, with GPU acceleration
Project description
SimplePPT
Python implementation of SimplePPT algorithm, with GPU acceleration.
Please cite the following paper if you use it:
Mao et al. (2015), SimplePPT: A simple principal tree algorithm, SIAM International Conference on Data Mining.
Installation
pip install -U simpleppt
Usage
from sklearn.datasets import make_classification
import simpleppt
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,
n_clusters_per_class=1, n_classes=3)
ppt=simpleppt.ppt(X1,Nodes=30,seed=1,progress=False,lam=10)
simpleppt.project_ppt(ppt,X1, c=Y1)
GPU dependencies (optional)
If you have a nvidia GPU, simpleppt can leverage CUDA computations for speedup in tree inference. The latest version of rapids framework is required (at least 0.17) it is recommanded to create a new conda environment:
conda create -n SimplePPT-gpu -c rapidsai -c nvidia -c conda-forge -c defaults \
rapids=0.19 python=3.8 cudatoolkit=11.0 -y
conda activate SimplePPT-gpu
pip install simpleppt
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
simpleppt-1.1.0.tar.gz
(101.7 kB
view details)
Built Distribution
simpleppt-1.1.0-py3-none-any.whl
(72.6 kB
view details)
File details
Details for the file simpleppt-1.1.0.tar.gz
.
File metadata
- Download URL: simpleppt-1.1.0.tar.gz
- Upload date:
- Size: 101.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9dd86c2725539aa9475b6b30cea6fba463f86c3182ea89da72cab2162be2213c |
|
MD5 | 7dcecda7054bf769bcd114e2a8555f98 |
|
BLAKE2b-256 | 248ee2ee744e1dfe48d959f27172f9dd90222434fa88dabd7a6b81fca23c89a6 |
File details
Details for the file simpleppt-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: simpleppt-1.1.0-py3-none-any.whl
- Upload date:
- Size: 72.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7e4d4ed8cc8a32804cb80b69d7b4feb2b268dd54d45b9d56c3a547bfc6c6e8d |
|
MD5 | caf82a96b2f6cb20e237c995e5c1871c |
|
BLAKE2b-256 | e8b430e74c0ce127e08430e5e2e17a5d60914b087a1ee026dee068dedad973c9 |