Skip to main content

Setup and train deep nets with PyTorch. Opinionated and Simple.

Project description

Configure and train deep feedforward PyTorch models with a lot of the details already or partially implemented.

DISCLAIMER: At the moment, this repo is used for my research. New versions are not necessarily backwards compatible. The API is subject to change at a moment's notice. If you happen to use it in your research or work, make sure in your requirements.txt to pin the version or reference the specific commit you used so you don't suffer unwanted surprises.

Motivation and useful features:

  • Clarity: Much research using PyTorch mixes tedious boiler plate code (like argparse configuration, standard training loop code, logging) with the contribution of your work (ie a new enhancement method, model or training style). By design, this repo tries to force you as a programmer to better separate the standard PyTorch code from your research contribution.
  • Simplicity from Command-line: All key parameters should be automatically exposed on the command-line. This library converts all public class variables in your Model Config class into an organized list of command-line arguments. This enables reproducible and highly configurable experiments.
  • Reproducibility: The logging infrastructure organizes all results, logs and model checkpoints for a particular experiment, identified by run_id into a dedicated directory. All configuration for your model can be defined at command-line.
  • Easy to get started: There can be a dizzying array of little details to implement when training a PyTorch model. Forgetting these details often leads to bugs and experiments with missing or incorrect results. The library (specifically the FeedForward class) gives a straightforward recipe and list of functions to implement.
  • Datasets: PyTorch Dataset implementations for data I use in my research. Mostly retinal fundus image datasets. You must download and unzip the datasets yourself. A download link is usually in the class docstring.

Install

pip install --upgrade simplepytorch

Quick Start

Train (or evaluate) your model

#
# set up a project
#
# --> create a directory for your project
mkdir -p ./myproject/data
# --> copy the examples directory (from this repo)
cp -rf ./examples ./myproject/
# --> link your pre-trained torch models into ./data if you want.
ln -sr ~/.torch ./myproject/data/torch
# --> now go download the RITE dataset and unzip it into ./myproject/data/RITE
ls ./myproject/data/RITE
# ls output: AV_groundTruth.zip  introduction.txt  read_me.txt  test  training

cd ./myproject
# --> ask Python to register the code in ./examples as a package
export PYTHONPATH=.:$PYTHONPATH

#
# train the model
#
simplepytorch ./examples/ -h
simplepytorch ./examples/ LetsTrainSomething -h
simplepytorch ./examples/ LetsTrainSomething --run-id experimentA --epochs 3
run_id=experimentB epochs=3 simplepytorch ./examples/ LetsTrainSomething

# --> debug your model with IPython
simplepytorch_debug ./examples/ LetsTrainSomething --run-id experimentA --epochs a
# --> now you can type %debug to drop into a PDB debugger.  Move around by typing `up` and `down`

# check the results
ls ./data/results/experimentA
tail -f ./data/results/experimentA/perf.csv 
# --> plot results for all experiments matching a regex
simplepytorch_plot 'experiment.*' --ns

Check the examples directory for a simple getting started template. You can train a model to perform vessel segmentation on the RITE dataset in about 70 lines of code.

examples/

As a next step, you can copy the examples directory, rename it to whatever your project name is and start from there. You will find, as mentioned in examples/my_feedforward_model_config.py that the api.FeedForward class typically lists everything needed. Assuming you want to use the FeedForward class, just implement or override its methods. If something isn't obvious or clear, create a GitHub issue. I will support you to the extent that I can.

Datasets:

To use the pre-defined dataset classes, you must download the data and unzip it yourself. Consult Dataset class docstring if necessary.

For example, some datasets I use have the following structure:

 $ ls data/{arsn_qualdr,eyepacs,messidor,IDRiD_segmentation,RITE}
data/IDRiD_segmentation:
'1. Original Images'  '2. All Segmentation Groundtruths'   CC-BY-4.0.txt   LICENSE.txt

data/RITE:
AV_groundTruth.zip  introduction.txt  read_me.txt  test  training

data/arsn_qualdr:
README.md  annotations  annotations.zip  imgs1  imgs1.zip  imgs2  imgs2.zip

data/eyepacs:
README.md                 test          test.zip.003  test.zip.006  train.zip.001  train.zip.004
sample.zip                test.zip.001  test.zip.004  test.zip.007  train.zip.002  train.zip.005
sampleSubmission.csv.zip  test.zip.002  test.zip.005  train         train.zip.003  trainLabels.csv.zip

data/messidor:
Annotation_Base11.csv  Annotation_Base21.csv  Annotation_Base31.csv  Base11  Base21  Base31
Annotation_Base12.csv  Annotation_Base22.csv  Annotation_Base32.csv  Base12  Base22  Base32
Annotation_Base13.csv  Annotation_Base23.csv  Annotation_Base33.csv  Base13  Base23  Base33
Annotation_Base14.csv  Annotation_Base24.csv  Annotation_Base34.csv  Base14  Base24  Base34

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for simplepytorch, version 0.0.4
Filename, size File type Python version Upload date Hashes
Filename, size simplepytorch-0.0.4-py3-none-any.whl (33.8 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size simplepytorch-0.0.4.tar.gz (28.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page