Skip to main content

Portable mixed-precision BLAS-like vector math library for x86 and ARM

Project description

SimSIMD banner

Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval. These algorithms generally have linear complexity in time, constant or linear complexity in space, and are data-parallel. In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS (level 1) and LAPACK, as well as higher-level numpy and scipy Python libraries. Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs. Moreover, most lack mixed-precision support, which is crucial for modern AI! The rare few that support minimal mixed precision, run only on one platform, and are vendor-locked, by companies like Intel and Nvidia. SimSIMD provides an alternative. 1️⃣ SimSIMD functions are practically as fast as memcpy. 2️⃣ Unlike BLAS, most kernels are designed for mixed-precision and bit-level operations. 3️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations, and more high-level interfaces than most libraries.

Features

SimSIMD (Arabic: "سيمسيم دي") is a mixed-precision math library of over 200 SIMD-optimized kernels extensively used in AI, Search, and DBMS workloads. Named after the iconic "Open Sesame" command that opened doors to treasure in Ali Baba and the Forty Thieves, SimSimd can help you 10x the cost-efficiency of your computational pipelines. Implemented distance functions include:

  • Euclidean (L2) and Cosine (Angular) spatial distances for Vector Search. docs
  • Dot-Products for real & complex vectors for DSP & Quantum computing. docs
  • Hamming (~ Manhattan) and Jaccard (~ Tanimoto) bit-level distances. docs
  • Set Intersections for Sparse Vectors and Text Analysis. docs
  • Mahalanobis distance and Quadratic forms for Scientific Computing. docs
  • Kullback-Leibler and Jensen–Shannon divergences for probability distributions. docs
  • Fused-Multiply-Add (FMA) and Weighted Sums to replace BLAS level 1 functions. docs
  • For Levenshtein, Needleman–Wunsch, and Smith-Waterman, check StringZilla.
  • 🔜 Haversine and Vincenty's formulae for Geospatial Analysis.

Moreover, SimSIMD...

  • handles f64, f32, f16, and bf16 real & complex vectors.
  • handles i8 integral, i4 sub-byte, and b8 binary vectors.
  • handles sparse u32 and u16 sets, and weighted sparse vectors.
  • is a zero-dependency header-only C 99 library.
  • has Python, Rust, JS, and Swift bindings.
  • has Arm backends for NEON, Scalable Vector Extensions (SVE), and SVE2.
  • has x86 backends for Haswell, Skylake, Ice Lake, Genoa, and Sapphire Rapids.
  • with both compile-time and runtime CPU feature detection easily integrates anywhere!

Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD generally uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:

Benchmarks

For reference, we use 1536-dimensional vectors, like the embeddings produced by the OpenAI Ada API. Comparing the serial code throughput produced by GCC 12 to hand-optimized kernels in SimSIMD, we see the following single-core improvements for the two most common vector-vector similarity metrics - the Cosine similarity and the Euclidean distance:

Type Apple M2 Pro Intel Sapphire Rapids AWS Graviton 4
f64 18.5 → 28.8 GB/s
+ 56 %
21.9 → 41.4 GB/s
+ 89 %
20.7 → 41.3 GB/s
+ 99 %
f32 9.2 → 29.6 GB/s
+ 221 %
10.9 → 95.8 GB/s
+ 779 %
4.9 → 41.9 GB/s
+ 755 %
f16 4.6 → 14.6 GB/s
+ 217 %
3.1 → 108.4 GB/s
+ 3,397 %
5.4 → 39.3 GB/s
+ 627 %
bf16 4.6 → 26.3 GB/s
+ 472 %
0.8 → 59.5 GB/s
+7,437 %
2.5 → 29.9 GB/s
+ 1,096 %
i8 25.8 → 47.1 GB/s
+ 83 %
33.1 → 65.3 GB/s
+ 97 %
35.2 → 43.5 GB/s
+ 24 %
u8 32.5 → 66.5 GB/s
+ 105 %

Similar speedups are often observed even when compared to BLAS and LAPACK libraries underlying most numerical computing libraries, including NumPy and SciPy in Python. Broader benchmarking results:

Using SimSIMD in Python

The package is intended to replace the usage of numpy.inner, numpy.dot, and scipy.spatial.distance. Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups. NumPy and SciPy, processing i8, u8 or f16 vectors, will use the same types for accumulators, while SimSIMD can combine i8 enumeration, i16 multiplication, and i32 accumulation to avoid overflows entirely. The same applies to processing f16 and bf16 values with f32 precision.

Installation

Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:

pip install simsimd
python -c "import simsimd; print(simsimd.get_capabilities())"   # for hardware introspection
python -c "import simsimd; help(simsimd)"                       # for documentation

With precompiled binaries, SimSIMD ships .pyi interface files for type hinting and static analysis. You can check all the available functions in python/annotations/__init__.pyi.

One-to-One Distance

import simsimd
import numpy as np

vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)

Supported functions include cosine, inner, sqeuclidean, hamming, jaccard, kulbackleibler, jensenshannon, and intersect. Dot products are supported for both real and complex numbers:

vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)

dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128))
dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64))
dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`

Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups.

dist = simsimd.cosine(vec1, vec2, "i8")
dist = simsimd.cosine(vec1, vec2, "f16")
dist = simsimd.cosine(vec1, vec2, "f32")
dist = simsimd.cosine(vec1, vec2, "f64")
dist = simsimd.hamming(vec1, vec2, "bits")
dist = simsimd.jaccard(vec1, vec2, "bits")

It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support. For that, view data as continuous even-length np.float16 vectors and override type-resolution with complex32 string.

vec1 = np.random.randn(1536).astype(np.float16)
vec2 = np.random.randn(1536).astype(np.float16)
simd.dot(vec1, vec2, "complex32")
simd.vdot(vec1, vec2, "complex32")

When dealing with sparse representations and integer sets, you can apply the intersect function to two 1-dimensional arrays of uint16 or uint32 integers:

from random import randint
import numpy as np
import simsimd as simd

length1, length2 = randint(1, 100), randint(1, 100)
vec1 = np.sort(np.random.randint(0, 1000, length1).astype(np.uint16))
vec2 = np.sort(np.random.randint(0, 1000, length2).astype(np.uint16))

slow_result = len(np.intersect1d(vec1, vec2))
fast_result = simd.intersect(vec1, vec2)
assert slow_result == fast_result

One-to-Many Distances

Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:

vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor
batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor
batch2 = np.random.randn(100, 1536).astype(np.float32)

dist_rank1 = simsimd.cosine(vec1, batch2)
dist_rank2 = simsimd.cosine(batch1, batch2)

Many-to-Many Distances

All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:

batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)

Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.

Many-to-Many All-Pairs Distances

One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist). The resulting object will have a type DistancesTensor, zero-copy compatible with NumPy and other libraries. For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:

import numpy as np
from simsimd import cdist, DistancesTensor

matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine")   # zero-copy, managed by SimSIMD
distances_array: np.ndarray = np.array(distances, copy=True)                    # now managed by NumPy

Multithreading and Memory Usage

By default, computations use a single CPU core. To override this behavior, use the threads argument. Set it to 0 to use all available CPU cores. Here is an example of dealing with large sets of binary vectors:

ndim = 1536 # OpenAI Ada embeddings
matrix1 = np.packbits(np.random.randint(2, size=(10_000, ndim)).astype(np.uint8))
matrix2 = np.packbits(np.random.randint(2, size=(1_000, ndim)).astype(np.uint8))

distances = simsimd.cdist(matrix1, matrix2, 
    metric="hamming", # Unlike SciPy, SimSIMD doesn't divide by the number of dimensions
    out_dtype="u8",   # so we can use `u8` instead of `f64` to save memory.
    threads=0,        # Use all CPU cores with OpenMP.
    dtype="b8",       # Override input argument type to `b8` eight-bit words.
)

By default, the output distances will be stored in double-precision f64 floating-point numbers. That behavior may not be space-efficient, especially if you are computing the hamming distance between short binary vectors, that will generally fit into 8x smaller u8 or u16 types. To override this behavior, use the dtype argument.

Helper Functions

You can turn specific backends on or off depending on the exact environment. A common case may be avoiding AVX-512 on older AMD CPUs and Intel Ice Lake CPUs to ensure the CPU doesn't change the frequency license and throttle performance.

$ simsimd.get_capabilities()
> {'serial': True, 'neon': False, 'sve': False, 'neon_f16': False, 'sve_f16': False, 'neon_bf16': False, 'sve_bf16': False, 'neon_i8': False, 'sve_i8': False, 'haswell': True, 'skylake': True, 'ice': True, 'genoa': True, 'sapphire': True, 'turin': True}
$ simsimd.disable_capability("sapphire")
$ simsimd.enable_capability("sapphire")

Using Python API with USearch

Want to use it in Python with USearch? You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric and pass it to USearch, similar to how it handles Numba's JIT-compiled code.

from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner

metric = CompiledMetric(
    pointer=pointer_to_cosine("f16"),
    kind=MetricKind.Cos,
    signature=MetricSignature.ArrayArraySize,
)

index = Index(256, metric=metric)

Using SimSIMD in Rust

To install, add the following to your Cargo.toml:

[dependencies]
simsimd = "..."

Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file. The library provides several traits for different distance/similarity kinds - SpatialSimilarity, BinarySimilarity, and ProbabilitySimilarity.

Spatial Similarity: Cosine and Euclidean Distances

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = f32::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    // Compute the squared Euclidean distance between vector_a and vector_b
    let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Spatial similarity functions are available for f64, f32, f16, and i8 types.

Dot-Products: Inner and Complex Inner Products

use simsimd::SpatialSimilarity;
use simsimd::ComplexProducts;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
    let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0];

    // Compute the inner product between vector_a and vector_b
    let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Inner Product: {}", inner_product);

    // Compute the complex inner product between complex_vector_a and complex_vector_b
    let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Complex Inner Product: {:?}", complex_inner_product); // -18, 69
    println!("Complex C. Inner Product: {:?}", complex_conjugate_inner_product); // 70, -8
}

Complex inner products are available for f64, f32, and f16 types.

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    let cosine_similarity = f32::jensenshannon(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    let sq_euclidean_distance = f32::kullbackleibler(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Probability similarity functions are available for f64, f32, and f16 types.

Binary Similarity: Hamming and Jaccard Distances

Similar to spatial distances, one can compute bit-level distance functions between slices of unsigned integers:

use simsimd::BinarySimilarity;

fn main() {
    let vector_a = &[0b11110000, 0b00001111, 0b10101010];
    let vector_b = &[0b11110000, 0b00001111, 0b01010101];

    // Compute the Hamming distance between vector_a and vector_b
    let hamming_distance = u8::hamming(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Hamming Distance: {}", hamming_distance);

    // Compute the Jaccard distance between vector_a and vector_b
    let jaccard_distance = u8::jaccard(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Jaccard Distance: {}", jaccard_distance);
}

Binary similarity functions are available only for u8 types.

Half-Precision Floating-Point Numbers

Rust has no native support for half-precision floating-point numbers, but SimSIMD provides a f16 type. It has no functionality - it is a transparent wrapper around u16 and can be used with half or any other half-precision library.

use simsimd::SpatialSimilarity;
use simsimd::f16 as SimF16;
use half::f16 as HalfF16;

fn main() {
    let vector_a: Vec<HalfF16> = ...
    let vector_b: Vec<HalfF16> = ...

    let buffer_a: &[SimF16] = unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const SimF16, a_half.len()) };
    let buffer_b: &[SimF16] = unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const SimF16, b_half.len()) };

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = SimF16::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);
}

Half-Precision Brain-Float Numbers

The "brain-float-16" is a popular machine learning format. It's broadly supported in hardware and is very machine-friendly, but software support is still lagging behind. Unlike NumPy, you can already use bf16 datatype in SimSIMD. Luckily, to downcast f32 to bf16 you only have to drop the last 16 bits:

import numpy as np
import simsimd as simd

a = np.random.randn(ndim).astype(np.float32)
b = np.random.randn(ndim).astype(np.float32)

# NumPy doesn't natively support brain-float, so we need a trick!
# Luckily, it's very easy to reduce the representation accuracy
# by simply masking the low 16-bits of our 32-bit single-precision
# numbers. We can also add `0x8000` to round the numbers.
a_f32rounded = ((a.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)
b_f32rounded = ((b.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)

# To represent them as brain-floats, we need to drop the second half
a_bf16 = np.right_shift(a_f32rounded.view(np.uint32), 16).astype(np.uint16)
b_bf16 = np.right_shift(b_f32rounded.view(np.uint32), 16).astype(np.uint16)

# Now we can compare the results
expected = np.inner(a_f32rounded, b_f32rounded)
result = simd.inner(a_bf16, b_bf16, "bf16")

Dynamic Dispatch in Rust

SimSIMD provides a dynamic dispatch mechanism to select the most advanced micro-kernel for the current CPU. You can query supported backends and use the SimSIMD::capabilities function to select the best one.

println!("uses neon: {}", capabilities::uses_neon());
println!("uses sve: {}", capabilities::uses_sve());
println!("uses haswell: {}", capabilities::uses_haswell());
println!("uses skylake: {}", capabilities::uses_skylake());
println!("uses ice: {}", capabilities::uses_ice());
println!("uses genoa: {}", capabilities::uses_genoa());
println!("uses sapphire: {}", capabilities::uses_sapphire());
println!("uses turin: {}", capabilities::uses_turin());

Using SimSIMD in JavaScript

To install, choose one of the following options depending on your environment:

  • npm install --save simsimd
  • yarn add simsimd
  • pnpm add simsimd
  • bun install simsimd

The package is distributed with prebuilt binaries, but if your platform is not supported, you can build the package from the source via npm run build. This will automatically happen unless you install the package with the --ignore-scripts flag or use Bun. After you install it, you will be able to call the SimSIMD functions on various TypedArray variants:

const { sqeuclidean, cosine, inner, hamming, jaccard } = require('simsimd');

const vectorA = new Float32Array([1.0, 2.0, 3.0]);
const vectorB = new Float32Array([4.0, 5.0, 6.0]);

const distance = sqeuclidean(vectorA, vectorB);
console.log('Squared Euclidean Distance:', distance);

Other numeric types and precision levels are supported as well. For double-precision floating-point numbers, use Float64Array:

const vectorA = new Float64Array([1.0, 2.0, 3.0]);
const vectorB = new Float64Array([4.0, 5.0, 6.0]);
const distance = cosine(vectorA, vectorB);

When doing machine learning and vector search with high-dimensional vectors you may want to quantize them to 8-bit integers. You may want to project values from the $[-1, 1]$ range to the $[-127, 127]$ range and then cast them to Int8Array:

const quantizedVectorA = new Int8Array(vectorA.map(v => (v * 127)));
const quantizedVectorB = new Int8Array(vectorB.map(v => (v * 127)));
const distance = cosine(quantizedVectorA, quantizedVectorB);

A more extreme quantization case would be to use binary vectors. You can map all positive values to 1 and all negative values and zero to 0, packing eight values into a single byte. After that, Hamming and Jaccard distances can be computed.

const { toBinary, hamming } = require('simsimd');

const binaryVectorA = toBinary(vectorA);
const binaryVectorB = toBinary(vectorB);
const distance = hamming(binaryVectorA, binaryVectorB);

Using SimSIMD in Sift

To install, simply add the following dependency to you Package.swift:

dependencies: [
    .package(url: "https://github.com/ashvardanian/simsimd")
]

The package provides the most common spatial metrics for Int8, Float16, Float32, and Float64 vectors.

import SimSIMD

let vectorA: [Int8] = [1, 2, 3]
let vectorB: [Int8] = [4, 5, 6]

let cosineSimilarity = vectorA.cosine(vectorB)  // Computes the cosine similarity
let dotProduct = vectorA.dot(vectorB)           // Computes the dot product
let sqEuclidean = vectorA.sqeuclidean(vectorB)  // Computes the squared Euclidean distance

Using SimSIMD in C

For integration within a CMake-based project, add the following segment to your CMakeLists.txt:

FetchContent_Declare(
    simsimd
    GIT_REPOSITORY https://github.com/ashvardanian/simsimd.git
    GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(simsimd)

After that, you can use the SimSIMD library in your C code in several ways. Simplest of all, you can include the headers, and the compiler will automatically select the most recent CPU extensions that SimSIMD will use.

#include <simsimd/simsimd.h>

int main() {
    simsimd_f32_t vector_a[1536];
    simsimd_f32_t vector_b[1536];
    simsimd_metric_punned_t distance_function = simsimd_metric_punned(
        simsimd_metric_cos_k,   // Metric kind, like the angular cosine distance
        simsimd_datatype_f32_k, // Data type, like: f16, f32, f64, i8, b8, and complex variants
        simsimd_cap_any_k);     // Which CPU capabilities are we allowed to use
    simsimd_distance_t distance;
    distance_function(vector_a, vector_b, 1536, &distance);
    return 0;
}

Dynamic Dispatch in C

To avoid hard-coding the backend, you can rely on c/lib.c to prepackage all possible backends in one binary, and select the most recent CPU features at runtime. That feature of the C library is called dynamic dispatch and is extensively used in the Python, JavaScript, and Rust bindings. To test which CPU features are available on the machine at runtime, use the following APIs:

int uses_dynamic_dispatch = simsimd_uses_dynamic_dispatch(); // Check if dynamic dispatch was enabled
simsimd_capability_t capabilities = simsimd_capabilities();  // Returns a bitmask

int uses_neon = simsimd_uses_neon();
int uses_sve = simsimd_uses_sve();
int uses_haswell = simsimd_uses_haswell();
int uses_skylake = simsimd_uses_skylake();
int uses_ice = simsimd_uses_ice();
int uses_genoa = simsimd_uses_genoa();
int uses_sapphire = simsimd_uses_sapphire();

To override compilation settings and switch between runtime and compile-time dispatch, define the following macro:

#define SIMSIMD_DYNAMIC_DISPATCH 1 // or 0

Spatial Distances: Cosine and Euclidean Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_i8_t i8[1536];
    simsimd_distance_t distance;

    // Cosine distance between two vectors
    simsimd_cos_i8(i8s, i8s, 1536, &distance);
    simsimd_cos_f16(f16s, f16s, 1536, &distance);
    simsimd_cos_f32(f32s, f32s, 1536, &distance);
    simsimd_cos_f64(f64s, f64s, 1536, &distance);
    
    // Euclidean distance between two vectors
    simsimd_l2sq_i8(i8s, i8s, 1536, &distance);
    simsimd_l2sq_f16(f16s, f16s, 1536, &distance);
    simsimd_l2sq_f32(f32s, f32s, 1536, &distance);
    simsimd_l2sq_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Dot-Products: Inner and Complex Inner Products

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Inner product between two vectors
    simsimd_dot_f16(f16s, f16s, 1536, &distance);
    simsimd_dot_f32(f32s, f32s, 1536, &distance);
    simsimd_dot_f64(f64s, f64s, 1536, &distance);

    // Complex inner product between two vectors
    simsimd_dot_f16c(f16s, f16s, 1536, &distance);
    simsimd_dot_f32c(f32s, f32s, 1536, &distance);
    simsimd_dot_f64c(f64s, f64s, 1536, &distance);

    // Complex conjugate inner product between two vectors
    simsimd_vdot_f16c(f16s, f16s, 1536, &distance);
    simsimd_vdot_f32c(f32s, f32s, 1536, &distance);
    simsimd_vdot_f64c(f64s, f64s, 1536, &distance);

    return 0;
}

Binary Distances: Hamming and Jaccard Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_b8_t b8s[1536 / 8]; // 8 bits per word
    simsimd_distance_t distance;

    // Hamming distance between two vectors
    simsimd_hamming_b8(b8s, b8s, 1536 / 8, &distance);

    // Jaccard distance between two vectors
    simsimd_jaccard_b8(b8s, b8s, 1536 / 8, &distance);

    return 0;
}

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Jensen-Shannon divergence between two vectors
    simsimd_js_f16(f16s, f16s, 1536, &distance);
    simsimd_js_f32(f32s, f32s, 1536, &distance);
    simsimd_js_f64(f64s, f64s, 1536, &distance);

    // Kullback-Leibler divergence between two vectors
    simsimd_kl_f16(f16s, f16s, 1536, &distance);
    simsimd_kl_f32(f32s, f32s, 1536, &distance);
    simsimd_kl_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Half-Precision Floating-Point Numbers

If you aim to utilize the _Float16 functionality with SimSIMD, ensure your development environment is compatible with C 11. For other SimSIMD functionalities, C 99 compatibility will suffice. To explicitly disable half-precision support, define the following macro before imports:

#define SIMSIMD_NATIVE_F16 0 // or 1
#define SIMSIMD_NATIVE_BF16 0 // or 1
#include <simsimd/simsimd.h>

Compilation Settings and Debugging

SIMSIMD_DYNAMIC_DISPATCH:

By default, SimSIMD is a header-only library. But if you are running on different generations of devices, it makes sense to pre-compile the library for all supported generations at once, and dispatch at runtime. This flag does just that and is used to produce the simsimd.so shared library, as well as the Python and other bindings.

For Arm: SIMSIMD_TARGET_NEON, SIMSIMD_TARGET_SVE, SIMSIMD_TARGET_SVE2, SIMSIMD_TARGET_NEON_F16, SIMSIMD_TARGET_SVE_F16, SIMSIMD_TARGET_NEON_BF16, SIMSIMD_TARGET_SVE_BF16. For x86: (SIMSIMD_TARGET_HASWELL, SIMSIMD_TARGET_SKYLAKE, SIMSIMD_TARGET_ICE, SIMSIMD_TARGET_GENOA, SIMSIMD_TARGET_SAPPHIRE, SIMSIMD_TARGET_TURIN, SIMSIMD_TARGET_SIERRA.

By default, SimSIMD automatically infers the target architecture and pre-compiles as many kernels as possible. In some cases, you may want to explicitly disable some of the kernels. Most often it's due to compiler support issues, like the lack of some recent intrinsics or low-precision numeric types. In other cases, you may want to disable some kernels to speed up the compilation process and trim the binary size.

SIMSIMD_SQRT, SIMSIMD_RSQRT, SIMSIMD_LOG:

By default, for non-SIMD backends, SimSIMD may use libc functions like sqrt and log. Those are generally very accurate, but slow, and introduce a dependency on the C standard library. To avoid that you can override those definitions with your custom implementations, like: #define SIMSIMD_RSQRT(x) (1 / sqrt(x)).

Algorithms & Design Decisions 📚

In general there are a few principles that SimSIMD follows:

  • Avoid loop unrolling.
  • Never allocate memory.
  • Never throw exceptions or set errno.
  • Keep all function arguments the size of the pointer.
  • Avoid returning from public interfaces, use out-arguments instead.
  • Don't over-optimize for old CPUs and single- and double-precision floating-point numbers.
  • Prioritize mixed-precision and integer operations, and new ISA extensions.
  • Prefer saturated arithmetic and avoid overflows.

Possibly, in the future:

  • Best effort computation silencing NaN components in low-precision inputs.
  • Detect overflows and report the distance with a "signaling" NaN.

Last, but not the least - don't build unless there is a demand for it. So if you have a specific use-case, please open an issue or a pull request, and ideally, bring in more users with similar needs.

Cosine Similarity, Reciprocal Square Root, and Newton-Raphson Iteration

The cosine similarity is the most common and straightforward metric used in machine learning and information retrieval. Interestingly, there are multiple ways to shoot yourself in the foot when computing it. The cosine similarity is the inverse of the cosine distance, which is the cosine of the angle between two vectors.

\text{CosineSimilarity}(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}
\text{CosineDistance}(a, b) = 1 - \frac{a \cdot b}{\|a\| \cdot \|b\|}

In NumPy terms, SimSIMD implementation is similar to:

import numpy as np

def cos_numpy(a: np.ndarray, b: np.ndarray) -> float:
    ab, a2, b2 = np.dot(a, b), np.dot(a, a), np.dot(b, b) # Fused in SimSIMD
    if a2 == 0 and b2 == 0: result = 0                    # Same in SciPy
    elif ab == 0: result = 1                              # Division by zero error in SciPy
    else: result = 1 - ab / (sqrt(a2) * sqrt(b2))         # Bigger rounding error in SciPy
    return result

In SciPy, however, the cosine distance is computed as 1 - ab / np.sqrt(a2 * b2). It handles the edge case of a zero and non-zero argument pair differently, resulting in a division by zero error. It's not only less efficient, but also less accurate, given how the reciprocal square roots are computed. The C standard library provides the sqrt function, which is generally very accurate, but slow. The rsqrt in-hardware implementations are faster, but have different accuracy characteristics.

  • SSE rsqrtps and AVX vrsqrtps: $1.5 \times 2^{-12}$ maximal relative error.
  • AVX-512 vrsqrt14pd instruction: $2^{-14}$ maximal relative error.
  • NEON frsqrte instruction has no documented error bounds, but can be $2^{-3}$.

To overcome the limitations of the rsqrt instruction, SimSIMD uses the Newton-Raphson iteration to refine the initial estimate for high-precision floating-point numbers. It can be defined as:

x_{n+1} = x_n \cdot (3 - x_n \cdot x_n) / 2

On 1536-dimensional inputs on Intel Sapphire Rapids CPU a single such iteration can result in a 2-3 orders of magnitude relative error reduction:

Datatype NumPy Error SimSIMD w/out Iteration SimSIMD
bfloat16 1.89e-08 ± 1.59e-08 3.07e-07 ± 3.09e-07 3.53e-09 ± 2.70e-09
float16 1.67e-02 ± 1.44e-02 2.68e-05 ± 1.95e-05 2.02e-05 ± 1.39e-05
float32 2.21e-08 ± 1.65e-08 3.47e-07 ± 3.49e-07 3.77e-09 ± 2.84e-09
float64 0.00e+00 ± 0.00e+00 3.80e-07 ± 4.50e-07 1.35e-11 ± 1.85e-11

Curved Spaces, Mahalanobis Distance, and Bilinear Quadratic Forms

The Mahalanobis distance is a generalization of the Euclidean distance, which takes into account the covariance of the data. It's very similar in its form to the bilinear form, which is a generalization of the dot product.

\text{BilinearForm}(a, b, M) = a^T M b
\text{Mahalanobis}(a, b, M) = \sqrt{(a - b)^T M^{-1} (a - b)}

Bilinear Forms can be seen as one of the most important linear algebraic operations, surprisingly missing in BLAS and LAPACK. They are versatile and appear in various domains:

  • In Quantum Mechanics, the expectation value of an observable $A$ in a state $\psi$ is given by $\langle \psi | A | \psi \rangle$, which is a bilinear form.
  • In Machine Learning, in Support Vector Machines (SVMs), bilinear forms define kernel functions that measure similarity between data points.
  • In Differential Geometry, the metric tensor, which defines distances and angles on a manifold, is a bilinear form on the tangent space.
  • In Economics, payoff functions in certain Game Theoretic problems can be modeled as bilinear forms of players' strategies.
  • In Physics, interactions between electric and magnetic fields can be expressed using bilinear forms.

Broad applications aside, the lack of a specialized primitive for bilinear forms in BLAS and LAPACK means significant performance overhead. A $vector * matrix * vector$ product is a scalar, whereas its constituent parts ($vector * matrix$ and $matrix * vector$) are vectors:

  • They need memory to be stored in: $O(n)$ allocation.
  • The data will be written to memory and read back, wasting CPU cycles.

SimSIMD doesn't produce intermediate vector results, like a @ M @ b, but computes the bilinear form directly.

Set Intersection, Galloping, and Binary Search

The set intersection operation is generally defined as the number of elements that are common between two sets, represented as sorted arrays of integers. The most common way to compute it is a linear scan:

size_t intersection_size(int *a, int *b, size_t n, size_t m) {
    size_t i = 0, j = 0, count = 0;
    while (i < n && j < m) {
        if (a[i] < b[j]) i++;
        else if (a[i] > b[j]) j++;
        else i++, j++, count++;
    }
    return count;
}

Alternatively, one can use the binary search to find the elements in the second array that are present in the first one. On every step the checked region of the second array is halved, which is called the galloping search. It's faster, but only when large arrays of very different sizes are intersected. Third approach is to use the SIMD instructions to compare multiple elements at once:

  • Using string-intersection instructions on x86, like pcmpestrm.
  • Using integer-intersection instructions in AVX-512, like vp2intersectd.
  • Using vanilla equality checks present in all SIMD instruction sets.

After benchmarking, the last approach was chosen, as it's the most flexible and often the fastest.

Complex Dot Products, Conjugate Dot Products, and Complex Numbers

Complex dot products are a generalization of the dot product to complex numbers. They are supported by most BLAS packages, but almost never in mixed precision. SimSIMD defines dot and vdot kernels as:

\text{dot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot b_i
\text{vdot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot \bar{b_i}

Where $\bar{b_i}$ is the complex conjugate of $b_i$. Putting that into Python code for scalar arrays:

def dot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br - ai * bi
        ab_imaginary += ar * bi + ai * br
    return ab_real, ab_imaginary

def vdot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br + ai * bi
        ab_imaginary += ar * bi - ai * br
    return ab_real, ab_imaginary

Logarithms in Kullback-Leibler & Jensen–Shannon Divergences

The Kullback-Leibler divergence is a measure of how one probability distribution diverges from a second, expected probability distribution. Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, which can be used as a distance metric between probability distributions.

\text{KL}(P || Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}
\text{JS}(P, Q) = \frac{1}{2} \text{KL}(P || M) + \frac{1}{2} \text{KL}(Q || M), M = \frac{P + Q}{2}

Both functions are defined for non-negative numbers, and the logarithm is a key part of their computation.

Mixed Precision in Fused-Multiply-Add and Weighted Sums

The Fused-Multiply-Add (FMA) operation is a single operation that combines element-wise multiplication and addition with different scaling factors. The Weighted Sum is it's simplified variant without element-wise multiplication.

\text{FMA}_i(A, B, C, \alpha, \beta) = \alpha \cdot A_i \cdot B_i + \beta \cdot C_i
\text{WSum}_i(A, B, \alpha, \beta) = \alpha \cdot A_i + \beta \cdot B_i

In NumPy terms, the implementation may look like:

import numpy as np
def wsum(A: np.ndarray, B: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype, "Input types must match and affect the output style"
    return (Alpha * A + Beta * B).astype(A.dtype)
def fma(A: np.ndarray, B: np.ndarray, C: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype and A.dtype == C.dtype, "Input types must match and affect the output style"
    return (Alpha * A * B + Beta * C).astype(A.dtype)

The tricky part is implementing those operations in mixed precision, where the scaling factors are of different precision than the input and output vectors. SimSIMD uses double-precision floating-point scaling factors for any input and output precision, including i8 and u8 integers and f16 and bf16 floats. Depending on the generation of the CPU, given native support for f16 addition and multiplication, the f16 temporaries are used for i8 and u8 multiplication, scaling, and addition. For bf16, native support is generally limited to dot-products with subsequent partial accumulation, which is not enough for the FMA and WSum operations, so f32 is used as a temporary.

Auto-Vectorization & Loop Unrolling

On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12. GCC handles single-precision float but might not be the best choice for int8 and _Float16 arrays, which have been part of the C language since 2011.

Kind GCC 12 f32 GCC 12 f16 SimSIMD f16 f16 improvement
Inner Product 3,810 K/s 192 K/s 5,990 K/s 31 x
Cosine Distance 3,280 K/s 336 K/s 6,880 K/s 20 x
Euclidean Distance ² 4,620 K/s 147 K/s 5,320 K/s 36 x
Jensen-Shannon Divergence 1,180 K/s 18 K/s 2,140 K/s 118 x

Dynamic Dispatch

Most popular software is precompiled and distributed with fairly conservative CPU optimizations, to ensure compatibility with older hardware. Database Management platforms, like ClickHouse, and Web Browsers, like Google Chrome,need to run on billions of devices, and they can't afford to be picky about the CPU features. For such users SimSIMD provides a dynamic dispatch mechanism, which selects the most advanced micro-kernel for the current CPU at runtime.

Subset F CD ER PF 4FMAPS 4VNNIW VPOPCNTDQ VL DQ BW IFMA VBMI VNNI BF16 VBMI2 BITALG VPCLMULQDQ GFNI VAES VP2INTERSECT FP16
Knights Landing (Xeon Phi x200, 2016) Yes Yes No
Knights Mill (Xeon Phi x205, 2017) Yes No
Skylake-SP, Skylake-X (2017) No No Yes No
Cannon Lake (2018) Yes No
Cascade Lake (2019) No Yes No
Cooper Lake (2020) Yes No
Ice Lake (2019) Yes No Yes No
Tiger Lake (2020) Yes No
Rocket Lake (2021) No
Alder Lake (2021) Partial Partial
Zen 4 (2022) Yes Yes No
Sapphire Rapids (2023) No Yes
Zen 5 (2024) Yes No

You can compile SimSIMD on an old CPU, like Intel Haswell, and run it on a new one, like AMD Genoa, and it will automatically use the most advanced instructions available. Reverse is also true, you can compile on a new CPU and run on an old one, and it will automatically fall back to the most basic instructions. Moreover, the very first time you prove for CPU capabilities with simsimd_capabilities(), it initializes the dynamic dispatch mechanism, and all subsequent calls will be faster and won't face race conditions in multi-threaded environments.

Target Specific Backends

SimSIMD exposes all kernels for all backends, and you can select the most advanced one for the current CPU without relying on built-in dispatch mechanisms. That's handy for testing and benchmarking, but also in case you want to dispatch a very specific kernel for a very specific CPU, bypassing SimSIMD assignment logic. All of the function names follow the same pattern: simsimd_{function}_{type}_{backend}.

  • The backend can be serial, haswell, skylake, ice, genoa, sapphire, turin, neon, or sve.
  • The type can be f64, f32, f16, bf16, f64c, f32c, f16c, bf16c, i8, or b8.
  • The function can be dot, vdot, cos, l2sq, hamming, jaccard, kl, js, or intersect.

To avoid hard-coding the backend, you can use the simsimd_metric_punned_t to pun the function pointer and the simsimd_capabilities function to get the available backends at runtime. To match all the function names, consider a RegEx:

SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(

On Linux, you can use the following command to list all unique functions:

$ grep -oP 'SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(' include/simsimd/*.h | sort | uniq
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simsimd-5.9.10.tar.gz (152.5 kB view details)

Uploaded Source

Built Distributions

simsimd-5.9.10-cp312-cp312-win_arm64.whl (54.3 kB view details)

Uploaded CPython 3.12 Windows ARM64

simsimd-5.9.10-cp312-cp312-win_amd64.whl (82.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

simsimd-5.9.10-cp312-cp312-win32.whl (51.8 kB view details)

Uploaded CPython 3.12 Windows x86

simsimd-5.9.10-cp312-cp312-musllinux_1_2_x86_64.whl (624.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

simsimd-5.9.10-cp312-cp312-musllinux_1_2_s390x.whl (306.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

simsimd-5.9.10-cp312-cp312-musllinux_1_2_ppc64le.whl (362.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

simsimd-5.9.10-cp312-cp312-musllinux_1_2_i686.whl (318.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

simsimd-5.9.10-cp312-cp312-musllinux_1_2_armv7l.whl (259.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.10-cp312-cp312-musllinux_1_2_aarch64.whl (438.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

simsimd-5.9.10-cp312-cp312-manylinux_2_28_x86_64.whl (681.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

simsimd-5.9.10-cp312-cp312-manylinux_2_28_aarch64.whl (396.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

simsimd-5.9.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

simsimd-5.9.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (227.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

simsimd-5.9.10-cp312-cp312-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

simsimd-5.9.10-cp312-cp312-macosx_10_13_x86_64.whl (91.7 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

simsimd-5.9.10-cp312-cp312-macosx_10_13_universal2.whl (148.9 kB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

simsimd-5.9.10-cp311-cp311-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.11 Windows ARM64

simsimd-5.9.10-cp311-cp311-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

simsimd-5.9.10-cp311-cp311-win32.whl (51.8 kB view details)

Uploaded CPython 3.11 Windows x86

simsimd-5.9.10-cp311-cp311-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

simsimd-5.9.10-cp311-cp311-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

simsimd-5.9.10-cp311-cp311-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

simsimd-5.9.10-cp311-cp311-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

simsimd-5.9.10-cp311-cp311-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.10-cp311-cp311-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

simsimd-5.9.10-cp311-cp311-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

simsimd-5.9.10-cp311-cp311-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

simsimd-5.9.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

simsimd-5.9.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

simsimd-5.9.10-cp311-cp311-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

simsimd-5.9.10-cp311-cp311-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

simsimd-5.9.10-cp311-cp311-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.10-cp310-cp310-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.10 Windows ARM64

simsimd-5.9.10-cp310-cp310-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

simsimd-5.9.10-cp310-cp310-win32.whl (51.8 kB view details)

Uploaded CPython 3.10 Windows x86

simsimd-5.9.10-cp310-cp310-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

simsimd-5.9.10-cp310-cp310-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

simsimd-5.9.10-cp310-cp310-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

simsimd-5.9.10-cp310-cp310-musllinux_1_2_i686.whl (318.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

simsimd-5.9.10-cp310-cp310-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.10-cp310-cp310-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

simsimd-5.9.10-cp310-cp310-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

simsimd-5.9.10-cp310-cp310-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

simsimd-5.9.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

simsimd-5.9.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

simsimd-5.9.10-cp310-cp310-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

simsimd-5.9.10-cp310-cp310-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

simsimd-5.9.10-cp310-cp310-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.10-cp39-cp39-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.9 Windows ARM64

simsimd-5.9.10-cp39-cp39-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

simsimd-5.9.10-cp39-cp39-win32.whl (51.7 kB view details)

Uploaded CPython 3.9 Windows x86

simsimd-5.9.10-cp39-cp39-musllinux_1_2_x86_64.whl (624.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

simsimd-5.9.10-cp39-cp39-musllinux_1_2_s390x.whl (305.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

simsimd-5.9.10-cp39-cp39-musllinux_1_2_ppc64le.whl (361.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

simsimd-5.9.10-cp39-cp39-musllinux_1_2_i686.whl (318.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

simsimd-5.9.10-cp39-cp39-musllinux_1_2_armv7l.whl (258.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.10-cp39-cp39-musllinux_1_2_aarch64.whl (438.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

simsimd-5.9.10-cp39-cp39-manylinux_2_28_x86_64.whl (680.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

simsimd-5.9.10-cp39-cp39-manylinux_2_28_aarch64.whl (396.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

simsimd-5.9.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (215.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

simsimd-5.9.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (270.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (226.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

simsimd-5.9.10-cp39-cp39-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

simsimd-5.9.10-cp39-cp39-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

simsimd-5.9.10-cp39-cp39-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.10-cp38-cp38-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

simsimd-5.9.10-cp38-cp38-win32.whl (51.7 kB view details)

Uploaded CPython 3.8 Windows x86

simsimd-5.9.10-cp38-cp38-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

simsimd-5.9.10-cp38-cp38-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

simsimd-5.9.10-cp38-cp38-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

simsimd-5.9.10-cp38-cp38-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

simsimd-5.9.10-cp38-cp38-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.10-cp38-cp38-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

simsimd-5.9.10-cp38-cp38-manylinux_2_28_x86_64.whl (681.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

simsimd-5.9.10-cp38-cp38-manylinux_2_28_aarch64.whl (397.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

simsimd-5.9.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

simsimd-5.9.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (227.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

simsimd-5.9.10-cp38-cp38-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

simsimd-5.9.10-cp38-cp38-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

simsimd-5.9.10-cp38-cp38-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.10-cp37-cp37m-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

simsimd-5.9.10-cp37-cp37m-win32.whl (51.7 kB view details)

Uploaded CPython 3.7m Windows x86

simsimd-5.9.10-cp37-cp37m-musllinux_1_2_x86_64.whl (623.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

simsimd-5.9.10-cp37-cp37m-musllinux_1_2_s390x.whl (305.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ s390x

simsimd-5.9.10-cp37-cp37m-musllinux_1_2_ppc64le.whl (361.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ppc64le

simsimd-5.9.10-cp37-cp37m-musllinux_1_2_i686.whl (318.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

simsimd-5.9.10-cp37-cp37m-musllinux_1_2_armv7l.whl (258.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARMv7l

simsimd-5.9.10-cp37-cp37m-musllinux_1_2_aarch64.whl (437.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

simsimd-5.9.10-cp37-cp37m-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

simsimd-5.9.10-cp37-cp37m-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

simsimd-5.9.10-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

simsimd-5.9.10-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

simsimd-5.9.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (227.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

simsimd-5.9.10-cp37-cp37m-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file simsimd-5.9.10.tar.gz.

File metadata

  • Download URL: simsimd-5.9.10.tar.gz
  • Upload date:
  • Size: 152.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10.tar.gz
Algorithm Hash digest
SHA256 b1bb95837f8ab18ee26e7e770025db4148065138aa08b3118b97b0087bf093e1
MD5 f43b4b31209d6c68b415bd5b4396a9fb
BLAKE2b-256 3c0bbbfbef6de39d1d5c4bdcc20bb6baa8e5238a4add15a8e715df2049158967

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10.tar.gz:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10.tar.gz
    • Subject digest: b1bb95837f8ab18ee26e7e770025db4148065138aa08b3118b97b0087bf093e1
    • Transparency log index: 145999431
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 091bf83c3d0aed9b73e7c6d599e070633a75d651bb11c93a4f5a4cbb9553ca48
MD5 0bc64d45f8bd7e04323450c1f7cb2c1e
BLAKE2b-256 addfb6835e1f1554bc2f52e740e191c3e6a4bfdd9776d94c9ea8c393052c4ba7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-win_arm64.whl
    • Subject digest: 091bf83c3d0aed9b73e7c6d599e070633a75d651bb11c93a4f5a4cbb9553ca48
    • Transparency log index: 145999475
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 32352b3836bc79e6d5799bd53bb04ba6caad3359f8875a764a79c37276472c85
MD5 579519463a393f9024a4d429401b8c60
BLAKE2b-256 3f5925888cd5593f4ae215f255ac9d059c0297ee13c07f6bda19e860e2904e80

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-win_amd64.whl
    • Subject digest: 32352b3836bc79e6d5799bd53bb04ba6caad3359f8875a764a79c37276472c85
    • Transparency log index: 145999506
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-win32.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp312-cp312-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c7a6aba59871ce360742cafd3ac22d83b19dd4edaf6fc4f2bb0f6a9d45a3740b
MD5 377b207b2d9130f921b6df0c21649843
BLAKE2b-256 a5a2a9a20004ee5bdc50e5edeea9b0dc6a22c4ddaa6201f2c51ff92cd5f550a2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-win32.whl
    • Subject digest: c7a6aba59871ce360742cafd3ac22d83b19dd4edaf6fc4f2bb0f6a9d45a3740b
    • Transparency log index: 145999511
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1903b7e88a92146ffe1c65ff7aa03ff80723234815fa2905f00e48aeaa2e71ee
MD5 f3862438b2305d6c7a49a78ae34f4a6a
BLAKE2b-256 47794c425b47ef81c553521cc24dd0046d9dacb38a131a842ab2a8d7003c6335

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-musllinux_1_2_x86_64.whl
    • Subject digest: 1903b7e88a92146ffe1c65ff7aa03ff80723234815fa2905f00e48aeaa2e71ee
    • Transparency log index: 145999479
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 c577dc019847c08b6a79878d5c6962eab20393c816669707db2c172521a8b94a
MD5 575ed51174d3ad35a31907098f190ec7
BLAKE2b-256 413174c0c6033c15a9f96d8dd7ee5e896c55f7383a970ab687b792f64f36a186

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-musllinux_1_2_s390x.whl
    • Subject digest: c577dc019847c08b6a79878d5c6962eab20393c816669707db2c172521a8b94a
    • Transparency log index: 145999461
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 439f9b8d9b0beed11d5d5f6c714b53fe7cf89cec221e8cedbcce4d472bbc0add
MD5 0f3a16b1c8c55a3f0bb5434080c6700d
BLAKE2b-256 494f39bafbdb66e4eee25053c281918533f0a4524d84bb865adc4638bc1779b7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-musllinux_1_2_ppc64le.whl
    • Subject digest: 439f9b8d9b0beed11d5d5f6c714b53fe7cf89cec221e8cedbcce4d472bbc0add
    • Transparency log index: 145999546
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 904c9952a64a8a2d88a23525fa515b26e22c63e48f0b51650d2e626e98ec3826
MD5 e12bbff2bb821870f47e36e5d13aab58
BLAKE2b-256 ee2ff5c6651a5ee76ea84a719e9be362af4a4f5d5fa896deb08c854ef540b005

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-musllinux_1_2_i686.whl
    • Subject digest: 904c9952a64a8a2d88a23525fa515b26e22c63e48f0b51650d2e626e98ec3826
    • Transparency log index: 145999467
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 ff54621f44b0d147dfd1466f01b9671aaff7dd8b409f0841eedaafe047fdfd9b
MD5 b0d6465758813e5c744a5a73d65eeded
BLAKE2b-256 37a3032676d2650dacf5df7585fa3116e706ae63174864500a460e51aac1488a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-musllinux_1_2_armv7l.whl
    • Subject digest: ff54621f44b0d147dfd1466f01b9671aaff7dd8b409f0841eedaafe047fdfd9b
    • Transparency log index: 145999589
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e9c3acadb575610d6b53b4cf25e00fa50154ef4ba72f280e35b73666d6db8fd2
MD5 5d3649a1ec5902579890285510f4926d
BLAKE2b-256 f4d8bcaa572e71962aa5bd92c631ae30008f8b71a84702b71c7bad1b655eea6f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-musllinux_1_2_aarch64.whl
    • Subject digest: e9c3acadb575610d6b53b4cf25e00fa50154ef4ba72f280e35b73666d6db8fd2
    • Transparency log index: 145999472
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 af3bcf5b4b14184f60a90849495985be9b93e7b773e562b383d07156e651ed62
MD5 ab38cbab43acde91ebf9334af851aa56
BLAKE2b-256 e40a2c4e76e793aa18ac978b4993e95b084a5d0208f3a9ed8b6ae7b53ce2edca

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-manylinux_2_28_x86_64.whl
    • Subject digest: af3bcf5b4b14184f60a90849495985be9b93e7b773e562b383d07156e651ed62
    • Transparency log index: 145999496
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6c614f212dc074df0ec7e1ac8126d28327e66417c4e8767fc3a82ba639fc7c6f
MD5 dcb098a4d875befe0fe494ad68c5bac8
BLAKE2b-256 e2227efbdde78be71b059352b76569df25ac8989457e658f561477ce8c35c2ae

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-manylinux_2_28_aarch64.whl
    • Subject digest: 6c614f212dc074df0ec7e1ac8126d28327e66417c4e8767fc3a82ba639fc7c6f
    • Transparency log index: 145999537
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d9902b2dad0619b18ebaa259d6ca1865fa2e05284e9e6c28fbc1b25ed3e387a5
MD5 3778bace88c47b997afcf0b5790859fd
BLAKE2b-256 1ab1494c5f4b33bc11a66ee956ef423868068bcade10ab33c93f1d5e37e89604

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: d9902b2dad0619b18ebaa259d6ca1865fa2e05284e9e6c28fbc1b25ed3e387a5
    • Transparency log index: 145999485
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 70b117e0b8b2119e595976105a37eb8c65f16a0cbc60d1fa9aaddad0d96b0567
MD5 63c6808f5013dd981825c7433d3ed6c3
BLAKE2b-256 563fc3206f79734be3c68a103e4a92f65837a007a99db8260cf322a7158c3cb0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 70b117e0b8b2119e595976105a37eb8c65f16a0cbc60d1fa9aaddad0d96b0567
    • Transparency log index: 145999573
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 30ca3530a979b94da6758fcca045d3255c1c376594e379a990702b760292eebd
MD5 8b9e7ee2c6bf0bcc3182bd0f32fd98c4
BLAKE2b-256 b488c439ca0c38ad7bdfe5299e66fad5cc185b3d3e7875051372dabd22a600c8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 30ca3530a979b94da6758fcca045d3255c1c376594e379a990702b760292eebd
    • Transparency log index: 145999471
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ccd9958250d38fb393f8d4a5f26fde641f13cc8d86674badf120500e6a49ebc9
MD5 ae0fa03f534ccf99b88afb517aca170c
BLAKE2b-256 433ae5e1b559bd3d8a7eb53d51fa0b2885b6d16c69ddf0bc44bbe8a02858b77d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-macosx_11_0_arm64.whl
    • Subject digest: ccd9958250d38fb393f8d4a5f26fde641f13cc8d86674badf120500e6a49ebc9
    • Transparency log index: 145999542
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7d8f499ad51beeb5530ddb3055a6e38dc9f81356db3d6cb2eb431be125754acf
MD5 43e7f5efcf9a1840d7e1fceee5d51d6c
BLAKE2b-256 fd4b31ac47ab96c6d3fbccc3b910617c700cc802a381371557642ce701ddcc60

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-macosx_10_13_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-macosx_10_13_x86_64.whl
    • Subject digest: 7d8f499ad51beeb5530ddb3055a6e38dc9f81356db3d6cb2eb431be125754acf
    • Transparency log index: 145999572
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 a739c73b0b8526f905d0902c8e48404552115eed66af7bfc3eaaf3cdf76fb000
MD5 347d7611c3b3c60f9fc351be6dcdf56d
BLAKE2b-256 160f86c499095bdd2a40e3c5e49c3520e30f21bc5bbe4ddd1c78ab6516daa976

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp312-cp312-macosx_10_13_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp312-cp312-macosx_10_13_universal2.whl
    • Subject digest: a739c73b0b8526f905d0902c8e48404552115eed66af7bfc3eaaf3cdf76fb000
    • Transparency log index: 145999576
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 9897f52eb9bd238ef8f63aa0b1262cc66637f11454950e762d53c4ffacea9f8a
MD5 6c784f5d2e527276ad5f755393ecec6f
BLAKE2b-256 fa8fddf294c05d564cb9c7eb1906dd493a05878f42cbf3b1eca0217053ce8e14

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-win_arm64.whl
    • Subject digest: 9897f52eb9bd238ef8f63aa0b1262cc66637f11454950e762d53c4ffacea9f8a
    • Transparency log index: 145999486
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 08f02f34b11bc7fc5f38f73c779d2963b5980abe014d216ac83299ced926d8b4
MD5 24ddd72667ffdb2e0cf66fb3d07474b8
BLAKE2b-256 50d2a0b6ef2c568b8952d5dd37dbe4ddeace325435dc393dff5d172bd142b752

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-win_amd64.whl
    • Subject digest: 08f02f34b11bc7fc5f38f73c779d2963b5980abe014d216ac83299ced926d8b4
    • Transparency log index: 145999443
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-win32.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp311-cp311-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8d62f82d7ffbb911bf6d2ead7df2f6204d1061bec789185a7afd2df700d57202
MD5 a75a010d1d3eb7e580df6684ef1b51db
BLAKE2b-256 c2b51dca0674554cf3afaa6b5f83351adac0a920e793580d7b01ea5a819b3837

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-win32.whl
    • Subject digest: 8d62f82d7ffbb911bf6d2ead7df2f6204d1061bec789185a7afd2df700d57202
    • Transparency log index: 145999476
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 48eb28c0c44e13ad3e6ee9d1421f2a8b5ca707599a655c4e89e1b781e1c30db0
MD5 943e286c9b037b71c25d488dc9299982
BLAKE2b-256 93c7f662eee761c061eeb2b51eb782cdbd7747fc53b7b07a054bf01715226f9b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-musllinux_1_2_x86_64.whl
    • Subject digest: 48eb28c0c44e13ad3e6ee9d1421f2a8b5ca707599a655c4e89e1b781e1c30db0
    • Transparency log index: 145999520
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 915729dd73a4ea0f9251146957b3247b64a0f12e9fb0b7f4a27a845af7e7e9bc
MD5 ea25727cd7c44c819951b27d6d125242
BLAKE2b-256 8467fc147fff9d5fcda91ff8f0bb14861d12572f056922bb8ac55a30374cd8ba

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-musllinux_1_2_s390x.whl
    • Subject digest: 915729dd73a4ea0f9251146957b3247b64a0f12e9fb0b7f4a27a845af7e7e9bc
    • Transparency log index: 145999563
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 e6528244b99483ecf74b797e2890c6976da9e62bff30ea6c47af63cfe8c199a8
MD5 93a06e1e8c902b293523d6a83f0f61fb
BLAKE2b-256 a023bbcd7b37003834009941cf71637803cc06adec3f0ae4dd466b9a6a4013fd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-musllinux_1_2_ppc64le.whl
    • Subject digest: e6528244b99483ecf74b797e2890c6976da9e62bff30ea6c47af63cfe8c199a8
    • Transparency log index: 145999459
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 07c17f078079953b02765148fe62d7cceac2cc6f6301f1462b8567b6e2107510
MD5 2fb1a22d094e07f6860373728b2d9f77
BLAKE2b-256 8a5c00aa4ca1fa349f7fd2c2f986dc0c7a14849fff366b5c69ef516f4d617684

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-musllinux_1_2_i686.whl
    • Subject digest: 07c17f078079953b02765148fe62d7cceac2cc6f6301f1462b8567b6e2107510
    • Transparency log index: 145999584
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 4f9e1279b4e017bd35c98db40dd71514e346bce28c18cd646e465218afe6c83c
MD5 fba2ba4dbb4864db72565dea11d4c14d
BLAKE2b-256 5ced3e0d7948a1f39137e7f06b068f1acfd9a7cff2b06123cccc4f8f5da4fa46

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-musllinux_1_2_armv7l.whl
    • Subject digest: 4f9e1279b4e017bd35c98db40dd71514e346bce28c18cd646e465218afe6c83c
    • Transparency log index: 145999543
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4ee55151df12ef5d97f8bf78bba0eae6617b068a55e4bdde213039e45b9f556c
MD5 5ad077ee137ecfdf33a46fb49f4a4d3c
BLAKE2b-256 32a4e384eef1f4afe80fd0ff67733a263e5566b8d2604ab1809bd78084d3fe2f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-musllinux_1_2_aarch64.whl
    • Subject digest: 4ee55151df12ef5d97f8bf78bba0eae6617b068a55e4bdde213039e45b9f556c
    • Transparency log index: 145999442
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1a5d05b125efd097f4503f927eedaf13a0bba363584a23cf9559b363d0ea73c4
MD5 8d8fb8fc0123842e0295049b1d5946b3
BLAKE2b-256 0098fd9b6bc2ca9c84f5760abdef8fcbefd27b91b1acc69284935e752b3b1c7f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-manylinux_2_28_x86_64.whl
    • Subject digest: 1a5d05b125efd097f4503f927eedaf13a0bba363584a23cf9559b363d0ea73c4
    • Transparency log index: 145999523
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a1cff519512cbd5416d990ab20460dd3f6f957fcd8ca42b1c5b8f9a3f841217c
MD5 859e7ed331ecffdef8ebd6ff85252b92
BLAKE2b-256 f38da56da449c1f520e8eb37292aaf1478ed516704223c519d773450812d7980

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-manylinux_2_28_aarch64.whl
    • Subject digest: a1cff519512cbd5416d990ab20460dd3f6f957fcd8ca42b1c5b8f9a3f841217c
    • Transparency log index: 145999539
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9ab22a14a0931c01471cbb5fbc454dacc3cfb39c31fba2c463620b50ea113db8
MD5 6c07c3c2f8f84846ea18c311c786208d
BLAKE2b-256 63ed866bf65154e892f258eaf03c74c47d166a10a60b674e589c0b8636d22c73

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 9ab22a14a0931c01471cbb5fbc454dacc3cfb39c31fba2c463620b50ea113db8
    • Transparency log index: 145999465
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fdafb27d0956d51ffe6161a5354cb456f0c418e5d8a22a59e273afa0b16509c2
MD5 2b996cf088c0cc187613fc6ebcc6f67c
BLAKE2b-256 15a8d37c9f99812b01a7e9e7214f139db56a249fd54155d1c903649f2ad9b9bb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: fdafb27d0956d51ffe6161a5354cb456f0c418e5d8a22a59e273afa0b16509c2
    • Transparency log index: 145999587
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d90d7ab1e04f89deeaaca3c2a276bfbd9a957d5f72a2aaa267e6172f0b81c13
MD5 afb2c6476be6dcb9d95106eb9e0f46b0
BLAKE2b-256 82bff0bc21b7196f4a87cd8d7a4f3736dced5ab387d34bbc6ea850609b0b8a0a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 3d90d7ab1e04f89deeaaca3c2a276bfbd9a957d5f72a2aaa267e6172f0b81c13
    • Transparency log index: 145999508
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5868aa2a191cb58d8f5cfb0a74467e78c630a45dd9cada287b6948233acaf5ab
MD5 e88b717e4310de73ee2b366fea255781
BLAKE2b-256 44c631cccacab5282cb0f9b98ce1ef614afb0d294d2efd318206b0269c1cb950

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-macosx_11_0_arm64.whl
    • Subject digest: 5868aa2a191cb58d8f5cfb0a74467e78c630a45dd9cada287b6948233acaf5ab
    • Transparency log index: 145999518
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4b2f01c33f6e6e37491191a114f1e6d894869e5635b73e1e62fcebc87d05339
MD5 c1f3e18d6634bf47d177f6d68b8d686a
BLAKE2b-256 c425ae54ab382cdaae01503f2555b3fecfea8b6b4e2b3d266ae16c05453d7994

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-macosx_10_9_x86_64.whl
    • Subject digest: b4b2f01c33f6e6e37491191a114f1e6d894869e5635b73e1e62fcebc87d05339
    • Transparency log index: 145999592
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 81d2b9dd6680bdd1dd9350116b550d4ae3e36a88a1ab49d853a3416d1b3631ba
MD5 a350c6bfa6c61616683500bfffa2582e
BLAKE2b-256 54ff1bb74b3b5c9f03f9ac4a43084edec743cf5b80c9cdbb4007dada33c91283

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp311-cp311-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp311-cp311-macosx_10_9_universal2.whl
    • Subject digest: 81d2b9dd6680bdd1dd9350116b550d4ae3e36a88a1ab49d853a3416d1b3631ba
    • Transparency log index: 145999469
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 7000c23583637a5228df8c3d03fdde115e6540ffa300017cf85bef241665ce71
MD5 6e0751708fac0213ac19f55b893670c9
BLAKE2b-256 5f9f0ff945aa31b707d4d3a496ece883b5edc7c61f5f8ce077299f66bf30b95d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-win_arm64.whl
    • Subject digest: 7000c23583637a5228df8c3d03fdde115e6540ffa300017cf85bef241665ce71
    • Transparency log index: 145999527
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 35ad466a6a3543da4164e9c6a1b1b988148b127110595493ce1d1565e78ab9e4
MD5 99a15df3abbf8b57ca6538dbbb5688e5
BLAKE2b-256 5a6c732f948fdccb62b539ee493f5bdad69adab686adfe5f14d0f085a2150975

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-win_amd64.whl
    • Subject digest: 35ad466a6a3543da4164e9c6a1b1b988148b127110595493ce1d1565e78ab9e4
    • Transparency log index: 145999536
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-win32.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp310-cp310-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7947c76327031ec7c76e5b24fccd8d9c0525f44de70956c1def580d33ec49dd0
MD5 c7aa8aad50c806a22bb70d87937a0481
BLAKE2b-256 bc09f82b736d3a456e3177d525e08aad096d9019511acebd55058f41c445210a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-win32.whl
    • Subject digest: 7947c76327031ec7c76e5b24fccd8d9c0525f44de70956c1def580d33ec49dd0
    • Transparency log index: 145999462
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 83f897b12707c86fbedd87ab002f069e3ce4e98074f0008749e09e44651738e5
MD5 5bd77ca9ba0141c64df65d5b91275e7a
BLAKE2b-256 ba8424da6f8aa0afdae8d56421078088de88c2d78d015fa5831fd2575c38c061

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-musllinux_1_2_x86_64.whl
    • Subject digest: 83f897b12707c86fbedd87ab002f069e3ce4e98074f0008749e09e44651738e5
    • Transparency log index: 145999473
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 5d42080da1d41f64115715de713a8cad90363f9046c7930429d0a94459033b79
MD5 9feeec65979b196e972a9f1357e777dc
BLAKE2b-256 116c373a25be2a3523f9ce9a084c727360ea103e74b244b8675ae3f643d1c4ba

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-musllinux_1_2_s390x.whl
    • Subject digest: 5d42080da1d41f64115715de713a8cad90363f9046c7930429d0a94459033b79
    • Transparency log index: 145999492
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 e7c61c4999743084917162887b37e0b71323ae4a4348ea9dba805c4ece49b4f2
MD5 31fb30533bcfa9c1674155bc63f240fd
BLAKE2b-256 23734112edc04113faa58ef20614605218ebd174d2aef8cf4df764d8334a04d5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-musllinux_1_2_ppc64le.whl
    • Subject digest: e7c61c4999743084917162887b37e0b71323ae4a4348ea9dba805c4ece49b4f2
    • Transparency log index: 145999550
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 942a778b165180c0344e02516617d0f5d9209936fb3cbe096e3c7993f7fbefbf
MD5 f9c16dbf771c05b143d404ab93e88125
BLAKE2b-256 c7681efbe0d7de2ccdfbe0594540a459c3132c20c8f1bfa880ab3df2fcdff250

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-musllinux_1_2_i686.whl
    • Subject digest: 942a778b165180c0344e02516617d0f5d9209936fb3cbe096e3c7993f7fbefbf
    • Transparency log index: 145999562
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3d0c77a98e843fd85164a6fd2210967ba1b1da6035cabefb0f162b646c418afb
MD5 c31614813baa1f10620cdea948046495
BLAKE2b-256 8eeb7965b6d41c7616f982ba8bdcf8715d0427826000421cd0424094f33915b5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-musllinux_1_2_armv7l.whl
    • Subject digest: 3d0c77a98e843fd85164a6fd2210967ba1b1da6035cabefb0f162b646c418afb
    • Transparency log index: 145999499
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c286931e0b580f98de7c5ce4cd9cc3063b6ad866c36bc30dd493cf1dc30f3861
MD5 8280d7f24b46f780418efd3de5b36702
BLAKE2b-256 cae759bf9131e8c458485837a5341848fcfe7dabe1a3a54f6a7afb8608b2c4e3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-musllinux_1_2_aarch64.whl
    • Subject digest: c286931e0b580f98de7c5ce4cd9cc3063b6ad866c36bc30dd493cf1dc30f3861
    • Transparency log index: 145999509
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4364a7baf27a42d7be73ed563d3283aad2c7b1b093f0039cd86cfe5499396fa8
MD5 f94e4b85a78a75d2b2c7a10c2429c194
BLAKE2b-256 0fdd614d2a013910244acc99db0ed6e75cd75269318f8bab9d36ef693a584845

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-manylinux_2_28_x86_64.whl
    • Subject digest: 4364a7baf27a42d7be73ed563d3283aad2c7b1b093f0039cd86cfe5499396fa8
    • Transparency log index: 145999552
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6f8abe8c3c3bcac402d0ee10eaacfff117b4cdab6c6948611f1eeefd94a10d29
MD5 859069e42781baf5a4b56d4949da88f1
BLAKE2b-256 d1f727196fc4d041a6056fdff22c5aeda9208a2d1cf9d642c92e3f27e37042db

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-manylinux_2_28_aarch64.whl
    • Subject digest: 6f8abe8c3c3bcac402d0ee10eaacfff117b4cdab6c6948611f1eeefd94a10d29
    • Transparency log index: 145999534
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 28f597142fe2a5dae7a19dc36d6c60676ba9ecba645c3c59d671e892e104ed2e
MD5 aa3726d531621b6ac9a5bc57987c9e69
BLAKE2b-256 11d8a25ee6c42571a42ce349fc2f62181d28024daee08e034487310ef8981687

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 28f597142fe2a5dae7a19dc36d6c60676ba9ecba645c3c59d671e892e104ed2e
    • Transparency log index: 145999583
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 558eb9cdb6900bda5e624b658519d9a441aeefa1ff019e45cf290b0854e87092
MD5 71fd26b2a007a4b093b390fa2e43c634
BLAKE2b-256 24ab9829ba9a14499762c6b944f34586d8a4b88412157f3549211241c4f93ace

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 558eb9cdb6900bda5e624b658519d9a441aeefa1ff019e45cf290b0854e87092
    • Transparency log index: 145999434
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 862f1e673b18bb33b895a438da459c2a5b4ae71e4835ae3fb8f299325921a86b
MD5 bd19fd0b65f1373c18c190b98b4e7fba
BLAKE2b-256 b2b220a4f01c3527a6fd1bd79e7a23c3eaef9cbc418ea333742b2c2b48e3459f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 862f1e673b18bb33b895a438da459c2a5b4ae71e4835ae3fb8f299325921a86b
    • Transparency log index: 145999553
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d305b55fea2b9f4eed2d9b04adfc51e739dc529035d10a006919e5718987a34e
MD5 e3a9496c2251bfef5b0e2c27af65d01d
BLAKE2b-256 fd17da2e3998584f6929a3a39dbc7148b5e8778a9e5a481623552e33e7766f9e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-macosx_11_0_arm64.whl
    • Subject digest: d305b55fea2b9f4eed2d9b04adfc51e739dc529035d10a006919e5718987a34e
    • Transparency log index: 145999500
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 519a699c210d27a407c34b037f3be9d0832f3b2d270355380fa46096ae9382e5
MD5 b9fc530edc2220f63516f298be412ff6
BLAKE2b-256 e287e15cacd429ddc39217101bf07a4aba38d688fe80325eddff39456787f828

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-macosx_10_9_x86_64.whl
    • Subject digest: 519a699c210d27a407c34b037f3be9d0832f3b2d270355380fa46096ae9382e5
    • Transparency log index: 145999452
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 50ef517a656aa658278028e93429829240b449160abbb21ac9fd6d70f7e549cf
MD5 77a3deb5fc188fef2ffe1b289e4d07f3
BLAKE2b-256 7a1af40f84b9ba00262763089ca1155ef31f60cc410414a436558c5e9fedbe29

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp310-cp310-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp310-cp310-macosx_10_9_universal2.whl
    • Subject digest: 50ef517a656aa658278028e93429829240b449160abbb21ac9fd6d70f7e549cf
    • Transparency log index: 145999514
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 4893c0f396a1b18756f1011e1ab742f51bf6f6b445d0df99f80ff75ce933e0aa
MD5 4e361e5db25d0e6df73cf6d7991b6580
BLAKE2b-256 f8e6a4cdd102c15355a86a58fca9dabc4dfe3303f2877591e2b5b25b536f692c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-win_arm64.whl
    • Subject digest: 4893c0f396a1b18756f1011e1ab742f51bf6f6b445d0df99f80ff75ce933e0aa
    • Transparency log index: 145999483
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 62e8b06a7cff740c6491f2285e5de0fdf6a2fbe26e3e3fa849ee6095423805bd
MD5 3af61dec0931fe0d5685050e2f6d9029
BLAKE2b-256 0c3e22acdd5f198f21f18e30d515fba106061f8eb2a56b65a897864e46e407af

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-win_amd64.whl
    • Subject digest: 62e8b06a7cff740c6491f2285e5de0fdf6a2fbe26e3e3fa849ee6095423805bd
    • Transparency log index: 145999439
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a70ee09870aa86a8d8c9a51901ba22e9980c24bc7cd3c57409524f386ce624df
MD5 8e8f443d9840a381dfdede15921c9dbe
BLAKE2b-256 737c1acdf1f19775f2f93a4eb1feb26e1fa60bb546445a00e07d031a78c4ef9e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-win32.whl
    • Subject digest: a70ee09870aa86a8d8c9a51901ba22e9980c24bc7cd3c57409524f386ce624df
    • Transparency log index: 145999570
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f43aa14f8e92813894a3d38da771c48500cc27ea0360858309f51f9e313a2857
MD5 11a22e93684fd8e3c1e98880d9941d9f
BLAKE2b-256 bb02be33a5274be72177a9f28f2f24942459f5e4a3bb5c48a452fb2289072524

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-musllinux_1_2_x86_64.whl
    • Subject digest: f43aa14f8e92813894a3d38da771c48500cc27ea0360858309f51f9e313a2857
    • Transparency log index: 145999445
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 9f254433c48cf1b99cbd5e0d0cd2eb2da02312254e260fdf8e3f0e5d8ab817af
MD5 e8de6bd8077eca1cda30cc1d059972f0
BLAKE2b-256 b1ea4cc5ccafe756f2cdabb64a94cd30cab43db9ca7d846b6355773bf6659b8e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-musllinux_1_2_s390x.whl
    • Subject digest: 9f254433c48cf1b99cbd5e0d0cd2eb2da02312254e260fdf8e3f0e5d8ab817af
    • Transparency log index: 145999533
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 606b8c44caf34357841ae387ca21012ce824436bf3a223ba1712433ae807c824
MD5 65fb82e1dcbd5ae3ac8cfa42213bb281
BLAKE2b-256 c54dc21dac44611dbbda46bd238d854a48afb1b5c9a94c9e55df1f56804747d3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-musllinux_1_2_ppc64le.whl
    • Subject digest: 606b8c44caf34357841ae387ca21012ce824436bf3a223ba1712433ae807c824
    • Transparency log index: 145999571
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 07d6266aca8de0d1b112776ba1322cb8ea158bcbc432bf7bc78b889806502bbe
MD5 5f2873209960d256638f8832048c655c
BLAKE2b-256 6c0cdb402a51e1ae3640725b103a8e8a0d41763d205340a231775ac9bd7fb83f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-musllinux_1_2_i686.whl
    • Subject digest: 07d6266aca8de0d1b112776ba1322cb8ea158bcbc432bf7bc78b889806502bbe
    • Transparency log index: 145999582
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3dc2d5d5310d995da124f30ad33f934be6a6829cab38a58b477478c02a5fa4b8
MD5 ce760a3825e247097a6b982281c1c2ec
BLAKE2b-256 4367ad854fca5368d794ca2cb229f9d15fd61e94610e61075336f240799c2832

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-musllinux_1_2_armv7l.whl
    • Subject digest: 3dc2d5d5310d995da124f30ad33f934be6a6829cab38a58b477478c02a5fa4b8
    • Transparency log index: 145999559
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 362297c7e48f9ddd32a252b8bdc3034f05cfda0047788178a3488be97c150faa
MD5 aa07d65d9f89e19c0f14097b2b749d29
BLAKE2b-256 8c4b9a81160a68c9faebb9b1201b441ce5ea5f0b98d7a896fd0e7a6a7fbdc607

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-musllinux_1_2_aarch64.whl
    • Subject digest: 362297c7e48f9ddd32a252b8bdc3034f05cfda0047788178a3488be97c150faa
    • Transparency log index: 145999519
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3a9918cd1c6119bf0fac5b3d75f1e6af982f3faa3702239e1abf8dfb9af0fe33
MD5 5f9a4caf321c10569ee4c177491476e3
BLAKE2b-256 557c9f74d407f796c07ccc0494af47319987880e38baa4a847c84373aad88dbf

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-manylinux_2_28_x86_64.whl
    • Subject digest: 3a9918cd1c6119bf0fac5b3d75f1e6af982f3faa3702239e1abf8dfb9af0fe33
    • Transparency log index: 145999516
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f496f522f2ad1fe06db569d6002829db7c302e7dc795bb1b7c50166a5fe194d8
MD5 5bbaec563fbc127e9c0497dec9525f3d
BLAKE2b-256 a6c69ef39ea66fe483078984ea5d6b5c9da1772b1523250e1ef0b3b1d3d33e8e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-manylinux_2_28_aarch64.whl
    • Subject digest: f496f522f2ad1fe06db569d6002829db7c302e7dc795bb1b7c50166a5fe194d8
    • Transparency log index: 145999532
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fc0aa52270606da2d9e5e37e9158a02e685f3402da639b21a803cf02d5c7f56d
MD5 b04a2c056dc0dbac98999fbd7219f628
BLAKE2b-256 be3ee6e40f9218c2ebeb217498e29fa53b5e8e94f3dbbfd0c7b056c3ce037d9d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: fc0aa52270606da2d9e5e37e9158a02e685f3402da639b21a803cf02d5c7f56d
    • Transparency log index: 145999575
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 47528cc08c1fdddd020598a51843aa5f59dacf1667e97415d75e6276297a7684
MD5 a99c1e4b4b33d6805ea5d28a7b4bbd42
BLAKE2b-256 60d121cfe6a29467980ffb38a5d9695b892161e5964b7245c349df40b06648e9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 47528cc08c1fdddd020598a51843aa5f59dacf1667e97415d75e6276297a7684
    • Transparency log index: 145999448
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 687229a77e1ce2b229d3d9ac74dfd167808db261d8271573d10b57bc11461188
MD5 1498bbc0e407ca35a064096a8b7322db
BLAKE2b-256 c40bb9f39c2037fff48e55aa00c89b758fe2cd668e8949a941c58adc73047273

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 687229a77e1ce2b229d3d9ac74dfd167808db261d8271573d10b57bc11461188
    • Transparency log index: 145999435
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c00096923e3462cb74f82455b6312d498ff6952fe3dc5c30e1171f2a0fc6ea3
MD5 6b466e30f8b5f7b73624241a3d9fd897
BLAKE2b-256 6fcdaa728d9e302599f2499a9acb3167efb1484e7d3bf58bfdb5478a30bf5f46

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-macosx_11_0_arm64.whl
    • Subject digest: 3c00096923e3462cb74f82455b6312d498ff6952fe3dc5c30e1171f2a0fc6ea3
    • Transparency log index: 145999544
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f949106671905cc875e6c947d9f58c5473b0a143d47ba5a2e2759254b371240e
MD5 b2c9cf5287f5b9f9f9606c001bed1999
BLAKE2b-256 c9ba473b992197d79ac10ce98377779f19c0f712c51daebd7dc96348959525b7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-macosx_10_9_x86_64.whl
    • Subject digest: f949106671905cc875e6c947d9f58c5473b0a143d47ba5a2e2759254b371240e
    • Transparency log index: 145999560
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 428859c2039be07ebae2e993aaab88eb5e3310c244de8d6070280cb77e0801fc
MD5 ae56866f28d23882faeefe0332d62425
BLAKE2b-256 86d64525bdf43bcd568f05f5090aa4733b06794ee9e4733c39a735a5abddddb4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp39-cp39-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp39-cp39-macosx_10_9_universal2.whl
    • Subject digest: 428859c2039be07ebae2e993aaab88eb5e3310c244de8d6070280cb77e0801fc
    • Transparency log index: 145999457
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3f5c2626c347b75a5fa20fce4ff6a48b6054b5b2445cb3c4a2fe7f3b85956104
MD5 297171898d6ace2a29382f360cac8ac5
BLAKE2b-256 01bc3a78486e607a1c8e4ea5a7dd9c89de8ced8732b51b44f33bb7db716c42bb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-win_amd64.whl
    • Subject digest: 3f5c2626c347b75a5fa20fce4ff6a48b6054b5b2445cb3c4a2fe7f3b85956104
    • Transparency log index: 145999489
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d94c103e4dbdc667a80f209361512caac1576feea994c3de61989a038fe4be3b
MD5 d0f22371652c9e0a667c62d855430c86
BLAKE2b-256 ec0c6b020170b6ee8e8cfcb4907a98685d6224e36e7ea84edae4d78e85f7e7cd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-win32.whl
    • Subject digest: d94c103e4dbdc667a80f209361512caac1576feea994c3de61989a038fe4be3b
    • Transparency log index: 145999450
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 447ea692083b2e8656d22877aa346733a792ed79af74c46c365c0527f23919bc
MD5 2b506dcfa47278779d79babbf545ab32
BLAKE2b-256 522257ee2a523fb56936039cfa408e04cbe802597b5a9cbc8302106fbe119d01

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-musllinux_1_2_x86_64.whl
    • Subject digest: 447ea692083b2e8656d22877aa346733a792ed79af74c46c365c0527f23919bc
    • Transparency log index: 145999579
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 64f04e8dc24e7fcb1be85adb1ebc70fe082fe94974e1066e89957d7b9d3f7696
MD5 58757816ab2b8e7949d542a6ab88d906
BLAKE2b-256 b30ea3500f743c65c4bf5e85fba546ac5793be81edd520946896f3dce9bfa86b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-musllinux_1_2_s390x.whl
    • Subject digest: 64f04e8dc24e7fcb1be85adb1ebc70fe082fe94974e1066e89957d7b9d3f7696
    • Transparency log index: 145999488
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 37b0e01b1053aa8a13f586d023b8cc2876aec404ab9590db2070bfce36d9d6fd
MD5 2f0276e1bf8c5f3b69e35e1634f96d53
BLAKE2b-256 812384f821bde0a97c9703a91f3e86664cc5e005e359374a7b195423cf08c10a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-musllinux_1_2_ppc64le.whl
    • Subject digest: 37b0e01b1053aa8a13f586d023b8cc2876aec404ab9590db2070bfce36d9d6fd
    • Transparency log index: 145999540
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7d636fbef37b1660499572cb1e210085ff8c0ad815e8d59cc59dab9e21ce1818
MD5 6fff01cda656af95d7db0c16aff5584e
BLAKE2b-256 e27847c0fc21ded9415edb1fe792b6fb3ef8b928ad399bbbe2bd7651c21b80b1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-musllinux_1_2_i686.whl
    • Subject digest: 7d636fbef37b1660499572cb1e210085ff8c0ad815e8d59cc59dab9e21ce1818
    • Transparency log index: 145999529
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 518c5afb12b82f353075355283fb59a5dc5fb373ff4602f1af974072dd988eaa
MD5 269e712e27fb956bf6de1ff368caa513
BLAKE2b-256 33207893883c9c38f93886d6c5ef9b786b5b94bc11b8db6a263c2efa57f9ab7b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-musllinux_1_2_armv7l.whl
    • Subject digest: 518c5afb12b82f353075355283fb59a5dc5fb373ff4602f1af974072dd988eaa
    • Transparency log index: 145999501
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9d3551249c78c39db5badefd2fc08022105f320a9d6135573d95676e0962e1b0
MD5 3f633fc845f1465ddd718d358a3d39ec
BLAKE2b-256 c2ca2e3d3995f8e257a85c561e5761f03e03b766b592f02d36a783a3e5b95b0c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-musllinux_1_2_aarch64.whl
    • Subject digest: 9d3551249c78c39db5badefd2fc08022105f320a9d6135573d95676e0962e1b0
    • Transparency log index: 145999538
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d16c1f8a314b76122cc485fb2ba581de31791928a280810153c567d029f3ddc3
MD5 e4131d7f13fd954516989ba8e172084c
BLAKE2b-256 b31086511bec3f65603b3054f7832b0a8587ee65557a7e79d30ad465d7374b07

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-manylinux_2_28_x86_64.whl
    • Subject digest: d16c1f8a314b76122cc485fb2ba581de31791928a280810153c567d029f3ddc3
    • Transparency log index: 145999581
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b3a5cdc53d816bad747e92afde771116180e9a8cc0e55e1ff56f798967df126b
MD5 7338693c7240b6a9d0c1d6c88db2e825
BLAKE2b-256 8bc80a3400fbf28670072a3b34a44113fb77b29d60da96528417df025737ac5f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-manylinux_2_28_aarch64.whl
    • Subject digest: b3a5cdc53d816bad747e92afde771116180e9a8cc0e55e1ff56f798967df126b
    • Transparency log index: 145999586
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4bcc49d7455eed591c6cb1132662a49442eba3f44a58bf4f393a45ac1e83ef5f
MD5 a69ebe3ff0b708e9618d147b78be497e
BLAKE2b-256 66584862b56debeb2d176f35823c87cef095231b01ccb8cbead7b07bd6db7cc7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 4bcc49d7455eed591c6cb1132662a49442eba3f44a58bf4f393a45ac1e83ef5f
    • Transparency log index: 145999497
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0048afa3eaed4ce18379242b08051fb641c4983b02f35da05b9de56a85a0f444
MD5 d5ef438411e4d5e68be949825cdb6f7e
BLAKE2b-256 62806f1d8af4a6da89580b4316b35d4c7e67a88ff03f415ddebd44ee0d7365af

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 0048afa3eaed4ce18379242b08051fb641c4983b02f35da05b9de56a85a0f444
    • Transparency log index: 145999549
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a627ca323f155eb4e98472193fe6a18436a888434ae70457e855b8707612b75
MD5 56acb099229951ed30ea694cf8414526
BLAKE2b-256 86e58b14858a075ca6cd57de97e90b7de2d5cd2ec91a1bbbecc8a27acc19d292

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 4a627ca323f155eb4e98472193fe6a18436a888434ae70457e855b8707612b75
    • Transparency log index: 145999590
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 94b84f7aef7843116cf2773c487362f62ef124f76c6bbf52407ce84b5ec80ddc
MD5 b323740451d005d8e490a0d56eaa88ef
BLAKE2b-256 040289f4523c10292a9f9b73aabde8a312c56d607f01d3ad5cb9924d99b2fd46

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-macosx_11_0_arm64.whl
    • Subject digest: 94b84f7aef7843116cf2773c487362f62ef124f76c6bbf52407ce84b5ec80ddc
    • Transparency log index: 145999588
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2db4140f6782cce03ef1b6558f486599655f87238ba12bf97f4f2cbbabe0757c
MD5 1f16b355c9623a00437a8275f79e9813
BLAKE2b-256 6e07ded1aa8da5ababd56a87ab02d10d54f82770e37ae6431ffe2c83366aa8fd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-macosx_10_9_x86_64.whl
    • Subject digest: 2db4140f6782cce03ef1b6558f486599655f87238ba12bf97f4f2cbbabe0757c
    • Transparency log index: 145999531
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 70588e625fd495a7e5484b5ddb2a37a22979acc11031a8cee757e2c34c1985f8
MD5 10e913eb9f3093be7dd10b0a4d7dcc41
BLAKE2b-256 d338d7600c8d59acf85ce61f0df16474042016eab79a61838ed41fc23d5bd0de

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp38-cp38-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp38-cp38-macosx_10_9_universal2.whl
    • Subject digest: 70588e625fd495a7e5484b5ddb2a37a22979acc11031a8cee757e2c34c1985f8
    • Transparency log index: 145999580
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e72a7cd7b61d7dd6c70ba7df3d856f56fe6217a29a21f9aeef34908022432d3b
MD5 5c44e433e1b5ea4cf9ffe96a263fe90f
BLAKE2b-256 431596c8f1f23fd5d36781930a1c2f56e7bfad0792a087ab40ac1c3a2ccddbdf

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-win_amd64.whl
    • Subject digest: e72a7cd7b61d7dd6c70ba7df3d856f56fe6217a29a21f9aeef34908022432d3b
    • Transparency log index: 145999503
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-win32.whl.

File metadata

  • Download URL: simsimd-5.9.10-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2574eb79da5c19152c844e1cd7ae7bf25c5a7feda8aecfb05f1dfa6ce294e3c1
MD5 5d8c44bcb2ad00e71566390fbc19d8e7
BLAKE2b-256 3082491e033b4c7ce9cdf60667ed09f72e9486391250ccb3ac57e900dfe24ad8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-win32.whl
    • Subject digest: 2574eb79da5c19152c844e1cd7ae7bf25c5a7feda8aecfb05f1dfa6ce294e3c1
    • Transparency log index: 145999521
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 399530090842a6afb8f43692fa5912c0f2f59294284f561b52a757e66283e368
MD5 7d17c1dc026a9ac625b3f748fb0ba514
BLAKE2b-256 91678d023e7bffd30fe4a9eda63c1c49714aac17eef8d76aa3862ab6bc65f3b3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-musllinux_1_2_x86_64.whl
    • Subject digest: 399530090842a6afb8f43692fa5912c0f2f59294284f561b52a757e66283e368
    • Transparency log index: 145999437
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 06be2760106aeaa0dce2aa89d0f143fbeffce3cfc3fd4a05c49737091610e8d3
MD5 4ed767b929f909f1120b5c18a765b44c
BLAKE2b-256 110d441615398f8d63ce5518da68d280200c7d5f552a2cfed32f511b93c9bca0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-musllinux_1_2_s390x.whl
    • Subject digest: 06be2760106aeaa0dce2aa89d0f143fbeffce3cfc3fd4a05c49737091610e8d3
    • Transparency log index: 145999464
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 563e497867309a7b5877d5485348a67ed235f4b7cbe54fe4b4e7a4f464906c6c
MD5 2f8d4be026324cb11b024ecabacb1d32
BLAKE2b-256 5f7bc3f59d969582acd52d64e5b1fbb033412730d94cecaa87997a026c81ab78

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-musllinux_1_2_ppc64le.whl
    • Subject digest: 563e497867309a7b5877d5485348a67ed235f4b7cbe54fe4b4e7a4f464906c6c
    • Transparency log index: 145999556
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 99df4222c3dc56d035c42dccc1bfce10efefae9db255ed900c1cb1b5cfe16cf0
MD5 97a85363ea84e5c4732dd517112f6a4a
BLAKE2b-256 8f681743905e62b7df3fbf008c9eb764c509dbed816feec96e65e235a2b0f95c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-musllinux_1_2_i686.whl
    • Subject digest: 99df4222c3dc56d035c42dccc1bfce10efefae9db255ed900c1cb1b5cfe16cf0
    • Transparency log index: 145999566
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 d98f4f38b72c5f4e101d65f070e6be12cd25815d9f8a8c79236140ac8cbc6e1f
MD5 e252a2d660ee0d6d55ac522d1d17feea
BLAKE2b-256 68fa0c9b08fc042801918abc1d23fb6ed840af802ad6d6bb9a5c708cf4937197

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-musllinux_1_2_armv7l.whl
    • Subject digest: d98f4f38b72c5f4e101d65f070e6be12cd25815d9f8a8c79236140ac8cbc6e1f
    • Transparency log index: 145999455
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 72ad1d90686281d5aed310f16212ff72c93b75f76121400b448910d8ccc37625
MD5 4bffc1cea8ac693fb418fea3a373c58b
BLAKE2b-256 b7de85241b8da14f41984366d35cf8e0e3ccea6c5bb7f4d5a5380addaff10e74

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-musllinux_1_2_aarch64.whl
    • Subject digest: 72ad1d90686281d5aed310f16212ff72c93b75f76121400b448910d8ccc37625
    • Transparency log index: 145999525
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 538049f17be6c3c71d92077556a9a3653f94c4ce715ae88b22c0cec36b5890e8
MD5 bb16f93e60a2392c05deb1594ef4d141
BLAKE2b-256 04c7dbe8e66acae98a048c75afbfbf86df1e2b4af5e02aa8027049187f982ea5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-manylinux_2_28_x86_64.whl
    • Subject digest: 538049f17be6c3c71d92077556a9a3653f94c4ce715ae88b22c0cec36b5890e8
    • Transparency log index: 145999526
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4fa02f9858afd2bb2ed5f532d9e5da66d8b978323496e92b2d26586646e10395
MD5 e78dc942a35c0b04cbf11293f0009e80
BLAKE2b-256 f268abe37373c7a68a8c1e2f25e370eb9d0d6c813f396b20c0f4177a608143fb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-manylinux_2_28_aarch64.whl
    • Subject digest: 4fa02f9858afd2bb2ed5f532d9e5da66d8b978323496e92b2d26586646e10395
    • Transparency log index: 145999433
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 34d27a6a0e82c2d0baf06a71be9fd9f9118f48541807182015affdb997acc28d
MD5 af633155e949075fc259e6d56dd98a2b
BLAKE2b-256 4ec82ff4ca64e075e3afe9e2322282abcf6c3700b1083ae3e74d76967ee87803

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 34d27a6a0e82c2d0baf06a71be9fd9f9118f48541807182015affdb997acc28d
    • Transparency log index: 145999545
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8512287f478a7312568f3f3a79460435eff325924675d02577f825847eed8d52
MD5 e4803ca1d5caabc8fe3eb6fad71c02d8
BLAKE2b-256 79460fd9b3a44c86c5ce3484615a4e56e1424589bfa18fdd998e44d110ba4f12

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 8512287f478a7312568f3f3a79460435eff325924675d02577f825847eed8d52
    • Transparency log index: 145999524
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ae1daec7d6f14f3ba7fb80516eaef090e5f6e264e9298945f8745b1019ee4e78
MD5 61ff2f4d8f70676e73fc9df037867fd3
BLAKE2b-256 18c9f6d193efd01ec70667d43bc0a1d651d2940cb6d3fc21897a94b91f52a260

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: ae1daec7d6f14f3ba7fb80516eaef090e5f6e264e9298945f8745b1019ee4e78
    • Transparency log index: 145999481
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c40111f7c65c11510cb3d97d9613f9079e287955f8767a7335903c717204f41f
MD5 db49e2944109ebf4a9cc6390a85c26c4
BLAKE2b-256 4e0fc746dffdc16309c36618d504c060f4d3904520ea72a396b6ed85ecdb2bef

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.10-cp37-cp37m-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.10-cp37-cp37m-macosx_10_9_x86_64.whl
    • Subject digest: c40111f7c65c11510cb3d97d9613f9079e287955f8767a7335903c717204f41f
    • Transparency log index: 145999480
    • Transparency log integration time:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page