Skip to main content

Portable mixed-precision BLAS-like vector math library for x86 and ARM

Project description

SimSIMD banner

Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval. These algorithms generally have linear complexity in time, constant or linear complexity in space, and are data-parallel. In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS (level 1) and LAPACK, as well as higher-level numpy and scipy Python libraries. Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs. Moreover, most lack mixed-precision support, which is crucial for modern AI! The rare few that support minimal mixed precision, run only on one platform, and are vendor-locked, by companies like Intel and Nvidia. SimSIMD provides an alternative. 1️⃣ SimSIMD functions are practically as fast as memcpy. 2️⃣ Unlike BLAS, most kernels are designed for mixed-precision and bit-level operations. 3️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations, and more high-level interfaces than most libraries.

Features

SimSIMD (Arabic: "سيمسيم دي") is a mixed-precision math library of over 200 SIMD-optimized kernels extensively used in AI, Search, and DBMS workloads. Named after the iconic "Open Sesame" command that opened doors to treasure in Ali Baba and the Forty Thieves, SimSimd can help you 10x the cost-efficiency of your computational pipelines. Implemented distance functions include:

  • Euclidean (L2) and Cosine (Angular) spatial distances for Vector Search. docs
  • Dot-Products for real & complex vectors for DSP & Quantum computing. docs
  • Hamming (~ Manhattan) and Jaccard (~ Tanimoto) bit-level distances. docs
  • Set Intersections for Sparse Vectors and Text Analysis. docs
  • Mahalanobis distance and Quadratic forms for Scientific Computing. docs
  • Kullback-Leibler and Jensen–Shannon divergences for probability distributions. docs
  • Fused-Multiply-Add (FMA) and Weighted Sums to replace BLAS level 1 functions. docs
  • For Levenshtein, Needleman–Wunsch, and Smith-Waterman, check StringZilla.
  • 🔜 Haversine and Vincenty's formulae for Geospatial Analysis.

Moreover, SimSIMD...

  • handles f64, f32, f16, and bf16 real & complex vectors.
  • handles i8 integral, i4 sub-byte, and b8 binary vectors.
  • handles sparse u32 and u16 sets, and weighted sparse vectors.
  • is a zero-dependency header-only C 99 library.
  • has Python, Rust, JS, and Swift bindings.
  • has Arm backends for NEON, Scalable Vector Extensions (SVE), and SVE2.
  • has x86 backends for Haswell, Skylake, Ice Lake, Genoa, and Sapphire Rapids.
  • with both compile-time and runtime CPU feature detection easily integrates anywhere!

Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD generally uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:

Benchmarks

For reference, we use 1536-dimensional vectors, like the embeddings produced by the OpenAI Ada API. Comparing the serial code throughput produced by GCC 12 to hand-optimized kernels in SimSIMD, we see the following single-core improvements for the two most common vector-vector similarity metrics - the Cosine similarity and the Euclidean distance:

Type Apple M2 Pro Intel Sapphire Rapids AWS Graviton 4
f64 18.5 → 28.8 GB/s
+ 56 %
21.9 → 41.4 GB/s
+ 89 %
20.7 → 41.3 GB/s
+ 99 %
f32 9.2 → 29.6 GB/s
+ 221 %
10.9 → 95.8 GB/s
+ 779 %
4.9 → 41.9 GB/s
+ 755 %
f16 4.6 → 14.6 GB/s
+ 217 %
3.1 → 108.4 GB/s
+ 3,397 %
5.4 → 39.3 GB/s
+ 627 %
bf16 4.6 → 26.3 GB/s
+ 472 %
0.8 → 59.5 GB/s
+7,437 %
2.5 → 29.9 GB/s
+ 1,096 %
i8 25.8 → 47.1 GB/s
+ 83 %
33.1 → 65.3 GB/s
+ 97 %
35.2 → 43.5 GB/s
+ 24 %
u8 32.5 → 66.5 GB/s
+ 105 %

Similar speedups are often observed even when compared to BLAS and LAPACK libraries underlying most numerical computing libraries, including NumPy and SciPy in Python. Broader benchmarking results:

Using SimSIMD in Python

The package is intended to replace the usage of numpy.inner, numpy.dot, and scipy.spatial.distance. Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups. NumPy and SciPy, processing i8, u8 or f16 vectors, will use the same types for accumulators, while SimSIMD can combine i8 enumeration, i16 multiplication, and i32 accumulation to avoid overflows entirely. The same applies to processing f16 and bf16 values with f32 precision.

Installation

Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:

pip install simsimd
python -c "import simsimd; print(simsimd.get_capabilities())"   # for hardware introspection
python -c "import simsimd; help(simsimd)"                       # for documentation

With precompiled binaries, SimSIMD ships .pyi interface files for type hinting and static analysis. You can check all the available functions in python/annotations/__init__.pyi.

One-to-One Distance

import simsimd
import numpy as np

vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)

Supported functions include cosine, inner, sqeuclidean, hamming, jaccard, kulbackleibler, jensenshannon, and intersect. Dot products are supported for both real and complex numbers:

vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)

dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128))
dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64))
dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`

Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups.

dist = simsimd.cosine(vec1, vec2, "i8")
dist = simsimd.cosine(vec1, vec2, "f16")
dist = simsimd.cosine(vec1, vec2, "f32")
dist = simsimd.cosine(vec1, vec2, "f64")
dist = simsimd.hamming(vec1, vec2, "bits")
dist = simsimd.jaccard(vec1, vec2, "bits")

It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support. For that, view data as continuous even-length np.float16 vectors and override type-resolution with complex32 string.

vec1 = np.random.randn(1536).astype(np.float16)
vec2 = np.random.randn(1536).astype(np.float16)
simd.dot(vec1, vec2, "complex32")
simd.vdot(vec1, vec2, "complex32")

When dealing with sparse representations and integer sets, you can apply the intersect function to two 1-dimensional arrays of uint16 or uint32 integers:

from random import randint
import numpy as np
import simsimd as simd

length1, length2 = randint(1, 100), randint(1, 100)
vec1 = np.sort(np.random.randint(0, 1000, length1).astype(np.uint16))
vec2 = np.sort(np.random.randint(0, 1000, length2).astype(np.uint16))

slow_result = len(np.intersect1d(vec1, vec2))
fast_result = simd.intersect(vec1, vec2)
assert slow_result == fast_result

One-to-Many Distances

Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:

vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor
batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor
batch2 = np.random.randn(100, 1536).astype(np.float32)

dist_rank1 = simsimd.cosine(vec1, batch2)
dist_rank2 = simsimd.cosine(batch1, batch2)

Many-to-Many Distances

All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:

batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)

Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.

Many-to-Many All-Pairs Distances

One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist). The resulting object will have a type DistancesTensor, zero-copy compatible with NumPy and other libraries. For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:

import numpy as np
from simsimd import cdist, DistancesTensor

matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine")   # zero-copy, managed by SimSIMD
distances_array: np.ndarray = np.array(distances, copy=True)                    # now managed by NumPy

Multithreading and Memory Usage

By default, computations use a single CPU core. To override this behavior, use the threads argument. Set it to 0 to use all available CPU cores. Here is an example of dealing with large sets of binary vectors:

ndim = 1536 # OpenAI Ada embeddings
matrix1 = np.packbits(np.random.randint(2, size=(10_000, ndim)).astype(np.uint8))
matrix2 = np.packbits(np.random.randint(2, size=(1_000, ndim)).astype(np.uint8))

distances = simsimd.cdist(matrix1, matrix2, 
    metric="hamming", # Unlike SciPy, SimSIMD doesn't divide by the number of dimensions
    out_dtype="u8",   # so we can use `u8` instead of `f64` to save memory.
    threads=0,        # Use all CPU cores with OpenMP.
    dtype="b8",       # Override input argument type to `b8` eight-bit words.
)

By default, the output distances will be stored in double-precision f64 floating-point numbers. That behavior may not be space-efficient, especially if you are computing the hamming distance between short binary vectors, that will generally fit into 8x smaller u8 or u16 types. To override this behavior, use the dtype argument.

Helper Functions

You can turn specific backends on or off depending on the exact environment. A common case may be avoiding AVX-512 on older AMD CPUs and Intel Ice Lake CPUs to ensure the CPU doesn't change the frequency license and throttle performance.

$ simsimd.get_capabilities()
> {'serial': True, 'neon': False, 'sve': False, 'neon_f16': False, 'sve_f16': False, 'neon_bf16': False, 'sve_bf16': False, 'neon_i8': False, 'sve_i8': False, 'haswell': True, 'skylake': True, 'ice': True, 'genoa': True, 'sapphire': True, 'turin': True}
$ simsimd.disable_capability("sapphire")
$ simsimd.enable_capability("sapphire")

Using Python API with USearch

Want to use it in Python with USearch? You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric and pass it to USearch, similar to how it handles Numba's JIT-compiled code.

from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner

metric = CompiledMetric(
    pointer=pointer_to_cosine("f16"),
    kind=MetricKind.Cos,
    signature=MetricSignature.ArrayArraySize,
)

index = Index(256, metric=metric)

Using SimSIMD in Rust

To install, add the following to your Cargo.toml:

[dependencies]
simsimd = "..."

Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file. The library provides several traits for different distance/similarity kinds - SpatialSimilarity, BinarySimilarity, and ProbabilitySimilarity.

Spatial Similarity: Cosine and Euclidean Distances

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = f32::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    // Compute the squared Euclidean distance between vector_a and vector_b
    let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Spatial similarity functions are available for f64, f32, f16, and i8 types.

Dot-Products: Inner and Complex Inner Products

use simsimd::SpatialSimilarity;
use simsimd::ComplexProducts;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
    let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0];

    // Compute the inner product between vector_a and vector_b
    let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Inner Product: {}", inner_product);

    // Compute the complex inner product between complex_vector_a and complex_vector_b
    let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Complex Inner Product: {:?}", complex_inner_product); // -18, 69
    println!("Complex C. Inner Product: {:?}", complex_conjugate_inner_product); // 70, -8
}

Complex inner products are available for f64, f32, and f16 types.

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    let cosine_similarity = f32::jensenshannon(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    let sq_euclidean_distance = f32::kullbackleibler(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Probability similarity functions are available for f64, f32, and f16 types.

Binary Similarity: Hamming and Jaccard Distances

Similar to spatial distances, one can compute bit-level distance functions between slices of unsigned integers:

use simsimd::BinarySimilarity;

fn main() {
    let vector_a = &[0b11110000, 0b00001111, 0b10101010];
    let vector_b = &[0b11110000, 0b00001111, 0b01010101];

    // Compute the Hamming distance between vector_a and vector_b
    let hamming_distance = u8::hamming(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Hamming Distance: {}", hamming_distance);

    // Compute the Jaccard distance between vector_a and vector_b
    let jaccard_distance = u8::jaccard(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Jaccard Distance: {}", jaccard_distance);
}

Binary similarity functions are available only for u8 types.

Half-Precision Floating-Point Numbers

Rust has no native support for half-precision floating-point numbers, but SimSIMD provides a f16 type. It has no functionality - it is a transparent wrapper around u16 and can be used with half or any other half-precision library.

use simsimd::SpatialSimilarity;
use simsimd::f16 as SimF16;
use half::f16 as HalfF16;

fn main() {
    let vector_a: Vec<HalfF16> = ...
    let vector_b: Vec<HalfF16> = ...

    let buffer_a: &[SimF16] = unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const SimF16, a_half.len()) };
    let buffer_b: &[SimF16] = unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const SimF16, b_half.len()) };

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = SimF16::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);
}

Half-Precision Brain-Float Numbers

The "brain-float-16" is a popular machine learning format. It's broadly supported in hardware and is very machine-friendly, but software support is still lagging behind. Unlike NumPy, you can already use bf16 datatype in SimSIMD. Luckily, to downcast f32 to bf16 you only have to drop the last 16 bits:

import numpy as np
import simsimd as simd

a = np.random.randn(ndim).astype(np.float32)
b = np.random.randn(ndim).astype(np.float32)

# NumPy doesn't natively support brain-float, so we need a trick!
# Luckily, it's very easy to reduce the representation accuracy
# by simply masking the low 16-bits of our 32-bit single-precision
# numbers. We can also add `0x8000` to round the numbers.
a_f32rounded = ((a.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)
b_f32rounded = ((b.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)

# To represent them as brain-floats, we need to drop the second half
a_bf16 = np.right_shift(a_f32rounded.view(np.uint32), 16).astype(np.uint16)
b_bf16 = np.right_shift(b_f32rounded.view(np.uint32), 16).astype(np.uint16)

# Now we can compare the results
expected = np.inner(a_f32rounded, b_f32rounded)
result = simd.inner(a_bf16, b_bf16, "bf16")

Dynamic Dispatch in Rust

SimSIMD provides a dynamic dispatch mechanism to select the most advanced micro-kernel for the current CPU. You can query supported backends and use the SimSIMD::capabilities function to select the best one.

println!("uses neon: {}", capabilities::uses_neon());
println!("uses sve: {}", capabilities::uses_sve());
println!("uses haswell: {}", capabilities::uses_haswell());
println!("uses skylake: {}", capabilities::uses_skylake());
println!("uses ice: {}", capabilities::uses_ice());
println!("uses genoa: {}", capabilities::uses_genoa());
println!("uses sapphire: {}", capabilities::uses_sapphire());
println!("uses turin: {}", capabilities::uses_turin());

Using SimSIMD in JavaScript

To install, choose one of the following options depending on your environment:

  • npm install --save simsimd
  • yarn add simsimd
  • pnpm add simsimd
  • bun install simsimd

The package is distributed with prebuilt binaries, but if your platform is not supported, you can build the package from the source via npm run build. This will automatically happen unless you install the package with the --ignore-scripts flag or use Bun. After you install it, you will be able to call the SimSIMD functions on various TypedArray variants:

const { sqeuclidean, cosine, inner, hamming, jaccard } = require('simsimd');

const vectorA = new Float32Array([1.0, 2.0, 3.0]);
const vectorB = new Float32Array([4.0, 5.0, 6.0]);

const distance = sqeuclidean(vectorA, vectorB);
console.log('Squared Euclidean Distance:', distance);

Other numeric types and precision levels are supported as well. For double-precision floating-point numbers, use Float64Array:

const vectorA = new Float64Array([1.0, 2.0, 3.0]);
const vectorB = new Float64Array([4.0, 5.0, 6.0]);
const distance = cosine(vectorA, vectorB);

When doing machine learning and vector search with high-dimensional vectors you may want to quantize them to 8-bit integers. You may want to project values from the $[-1, 1]$ range to the $[-127, 127]$ range and then cast them to Int8Array:

const quantizedVectorA = new Int8Array(vectorA.map(v => (v * 127)));
const quantizedVectorB = new Int8Array(vectorB.map(v => (v * 127)));
const distance = cosine(quantizedVectorA, quantizedVectorB);

A more extreme quantization case would be to use binary vectors. You can map all positive values to 1 and all negative values and zero to 0, packing eight values into a single byte. After that, Hamming and Jaccard distances can be computed.

const { toBinary, hamming } = require('simsimd');

const binaryVectorA = toBinary(vectorA);
const binaryVectorB = toBinary(vectorB);
const distance = hamming(binaryVectorA, binaryVectorB);

Using SimSIMD in Sift

To install, simply add the following dependency to you Package.swift:

dependencies: [
    .package(url: "https://github.com/ashvardanian/simsimd")
]

The package provides the most common spatial metrics for Int8, Float16, Float32, and Float64 vectors.

import SimSIMD

let vectorA: [Int8] = [1, 2, 3]
let vectorB: [Int8] = [4, 5, 6]

let cosineSimilarity = vectorA.cosine(vectorB)  // Computes the cosine similarity
let dotProduct = vectorA.dot(vectorB)           // Computes the dot product
let sqEuclidean = vectorA.sqeuclidean(vectorB)  // Computes the squared Euclidean distance

Using SimSIMD in C

For integration within a CMake-based project, add the following segment to your CMakeLists.txt:

FetchContent_Declare(
    simsimd
    GIT_REPOSITORY https://github.com/ashvardanian/simsimd.git
    GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(simsimd)

After that, you can use the SimSIMD library in your C code in several ways. Simplest of all, you can include the headers, and the compiler will automatically select the most recent CPU extensions that SimSIMD will use.

#include <simsimd/simsimd.h>

int main() {
    simsimd_f32_t vector_a[1536];
    simsimd_f32_t vector_b[1536];
    simsimd_metric_punned_t distance_function = simsimd_metric_punned(
        simsimd_metric_cos_k,   // Metric kind, like the angular cosine distance
        simsimd_datatype_f32_k, // Data type, like: f16, f32, f64, i8, b8, and complex variants
        simsimd_cap_any_k);     // Which CPU capabilities are we allowed to use
    simsimd_distance_t distance;
    distance_function(vector_a, vector_b, 1536, &distance);
    return 0;
}

Dynamic Dispatch in C

To avoid hard-coding the backend, you can rely on c/lib.c to prepackage all possible backends in one binary, and select the most recent CPU features at runtime. That feature of the C library is called dynamic dispatch and is extensively used in the Python, JavaScript, and Rust bindings. To test which CPU features are available on the machine at runtime, use the following APIs:

int uses_dynamic_dispatch = simsimd_uses_dynamic_dispatch(); // Check if dynamic dispatch was enabled
simsimd_capability_t capabilities = simsimd_capabilities();  // Returns a bitmask

int uses_neon = simsimd_uses_neon();
int uses_sve = simsimd_uses_sve();
int uses_haswell = simsimd_uses_haswell();
int uses_skylake = simsimd_uses_skylake();
int uses_ice = simsimd_uses_ice();
int uses_genoa = simsimd_uses_genoa();
int uses_sapphire = simsimd_uses_sapphire();

To override compilation settings and switch between runtime and compile-time dispatch, define the following macro:

#define SIMSIMD_DYNAMIC_DISPATCH 1 // or 0

Spatial Distances: Cosine and Euclidean Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_i8_t i8[1536];
    simsimd_distance_t distance;

    // Cosine distance between two vectors
    simsimd_cos_i8(i8s, i8s, 1536, &distance);
    simsimd_cos_f16(f16s, f16s, 1536, &distance);
    simsimd_cos_f32(f32s, f32s, 1536, &distance);
    simsimd_cos_f64(f64s, f64s, 1536, &distance);
    
    // Euclidean distance between two vectors
    simsimd_l2sq_i8(i8s, i8s, 1536, &distance);
    simsimd_l2sq_f16(f16s, f16s, 1536, &distance);
    simsimd_l2sq_f32(f32s, f32s, 1536, &distance);
    simsimd_l2sq_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Dot-Products: Inner and Complex Inner Products

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Inner product between two vectors
    simsimd_dot_f16(f16s, f16s, 1536, &distance);
    simsimd_dot_f32(f32s, f32s, 1536, &distance);
    simsimd_dot_f64(f64s, f64s, 1536, &distance);

    // Complex inner product between two vectors
    simsimd_dot_f16c(f16s, f16s, 1536, &distance);
    simsimd_dot_f32c(f32s, f32s, 1536, &distance);
    simsimd_dot_f64c(f64s, f64s, 1536, &distance);

    // Complex conjugate inner product between two vectors
    simsimd_vdot_f16c(f16s, f16s, 1536, &distance);
    simsimd_vdot_f32c(f32s, f32s, 1536, &distance);
    simsimd_vdot_f64c(f64s, f64s, 1536, &distance);

    return 0;
}

Binary Distances: Hamming and Jaccard Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_b8_t b8s[1536 / 8]; // 8 bits per word
    simsimd_distance_t distance;

    // Hamming distance between two vectors
    simsimd_hamming_b8(b8s, b8s, 1536 / 8, &distance);

    // Jaccard distance between two vectors
    simsimd_jaccard_b8(b8s, b8s, 1536 / 8, &distance);

    return 0;
}

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Jensen-Shannon divergence between two vectors
    simsimd_js_f16(f16s, f16s, 1536, &distance);
    simsimd_js_f32(f32s, f32s, 1536, &distance);
    simsimd_js_f64(f64s, f64s, 1536, &distance);

    // Kullback-Leibler divergence between two vectors
    simsimd_kl_f16(f16s, f16s, 1536, &distance);
    simsimd_kl_f32(f32s, f32s, 1536, &distance);
    simsimd_kl_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Half-Precision Floating-Point Numbers

If you aim to utilize the _Float16 functionality with SimSIMD, ensure your development environment is compatible with C 11. For other SimSIMD functionalities, C 99 compatibility will suffice. To explicitly disable half-precision support, define the following macro before imports:

#define SIMSIMD_NATIVE_F16 0 // or 1
#define SIMSIMD_NATIVE_BF16 0 // or 1
#include <simsimd/simsimd.h>

Compilation Settings and Debugging

SIMSIMD_DYNAMIC_DISPATCH:

By default, SimSIMD is a header-only library. But if you are running on different generations of devices, it makes sense to pre-compile the library for all supported generations at once, and dispatch at runtime. This flag does just that and is used to produce the simsimd.so shared library, as well as the Python and other bindings.

For Arm: SIMSIMD_TARGET_NEON, SIMSIMD_TARGET_SVE, SIMSIMD_TARGET_SVE2, SIMSIMD_TARGET_NEON_F16, SIMSIMD_TARGET_SVE_F16, SIMSIMD_TARGET_NEON_BF16, SIMSIMD_TARGET_SVE_BF16. For x86: (SIMSIMD_TARGET_HASWELL, SIMSIMD_TARGET_SKYLAKE, SIMSIMD_TARGET_ICE, SIMSIMD_TARGET_GENOA, SIMSIMD_TARGET_SAPPHIRE, SIMSIMD_TARGET_TURIN, SIMSIMD_TARGET_SIERRA.

By default, SimSIMD automatically infers the target architecture and pre-compiles as many kernels as possible. In some cases, you may want to explicitly disable some of the kernels. Most often it's due to compiler support issues, like the lack of some recent intrinsics or low-precision numeric types. In other cases, you may want to disable some kernels to speed up the compilation process and trim the binary size.

SIMSIMD_SQRT, SIMSIMD_RSQRT, SIMSIMD_LOG:

By default, for non-SIMD backends, SimSIMD may use libc functions like sqrt and log. Those are generally very accurate, but slow, and introduce a dependency on the C standard library. To avoid that you can override those definitions with your custom implementations, like: #define SIMSIMD_RSQRT(x) (1 / sqrt(x)).

Algorithms & Design Decisions 📚

In general there are a few principles that SimSIMD follows:

  • Avoid loop unrolling.
  • Never allocate memory.
  • Never throw exceptions or set errno.
  • Keep all function arguments the size of the pointer.
  • Avoid returning from public interfaces, use out-arguments instead.
  • Don't over-optimize for old CPUs and single- and double-precision floating-point numbers.
  • Prioritize mixed-precision and integer operations, and new ISA extensions.
  • Prefer saturated arithmetic and avoid overflows.

Possibly, in the future:

  • Best effort computation silencing NaN components in low-precision inputs.
  • Detect overflows and report the distance with a "signaling" NaN.

Last, but not the least - don't build unless there is a demand for it. So if you have a specific use-case, please open an issue or a pull request, and ideally, bring in more users with similar needs.

Cosine Similarity, Reciprocal Square Root, and Newton-Raphson Iteration

The cosine similarity is the most common and straightforward metric used in machine learning and information retrieval. Interestingly, there are multiple ways to shoot yourself in the foot when computing it. The cosine similarity is the inverse of the cosine distance, which is the cosine of the angle between two vectors.

\text{CosineSimilarity}(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}
\text{CosineDistance}(a, b) = 1 - \frac{a \cdot b}{\|a\| \cdot \|b\|}

In NumPy terms, SimSIMD implementation is similar to:

import numpy as np

def cos_numpy(a: np.ndarray, b: np.ndarray) -> float:
    ab, a2, b2 = np.dot(a, b), np.dot(a, a), np.dot(b, b) # Fused in SimSIMD
    if a2 == 0 and b2 == 0: result = 0                    # Same in SciPy
    elif ab == 0: result = 1                              # Division by zero error in SciPy
    else: result = 1 - ab / (sqrt(a2) * sqrt(b2))         # Bigger rounding error in SciPy
    return result

In SciPy, however, the cosine distance is computed as 1 - ab / np.sqrt(a2 * b2). It handles the edge case of a zero and non-zero argument pair differently, resulting in a division by zero error. It's not only less efficient, but also less accurate, given how the reciprocal square roots are computed. The C standard library provides the sqrt function, which is generally very accurate, but slow. The rsqrt in-hardware implementations are faster, but have different accuracy characteristics.

  • SSE rsqrtps and AVX vrsqrtps: $1.5 \times 2^{-12}$ maximal relative error.
  • AVX-512 vrsqrt14pd instruction: $2^{-14}$ maximal relative error.
  • NEON frsqrte instruction has no documented error bounds, but can be $2^{-3}$.

To overcome the limitations of the rsqrt instruction, SimSIMD uses the Newton-Raphson iteration to refine the initial estimate for high-precision floating-point numbers. It can be defined as:

x_{n+1} = x_n \cdot (3 - x_n \cdot x_n) / 2

On 1536-dimensional inputs on Intel Sapphire Rapids CPU a single such iteration can result in a 2-3 orders of magnitude relative error reduction:

Datatype NumPy Error SimSIMD w/out Iteration SimSIMD
bfloat16 1.89e-08 ± 1.59e-08 3.07e-07 ± 3.09e-07 3.53e-09 ± 2.70e-09
float16 1.67e-02 ± 1.44e-02 2.68e-05 ± 1.95e-05 2.02e-05 ± 1.39e-05
float32 2.21e-08 ± 1.65e-08 3.47e-07 ± 3.49e-07 3.77e-09 ± 2.84e-09
float64 0.00e+00 ± 0.00e+00 3.80e-07 ± 4.50e-07 1.35e-11 ± 1.85e-11

Curved Spaces, Mahalanobis Distance, and Bilinear Quadratic Forms

The Mahalanobis distance is a generalization of the Euclidean distance, which takes into account the covariance of the data. It's very similar in its form to the bilinear form, which is a generalization of the dot product.

\text{BilinearForm}(a, b, M) = a^T M b
\text{Mahalanobis}(a, b, M) = \sqrt{(a - b)^T M^{-1} (a - b)}

Bilinear Forms can be seen as one of the most important linear algebraic operations, surprisingly missing in BLAS and LAPACK. They are versatile and appear in various domains:

  • In Quantum Mechanics, the expectation value of an observable $A$ in a state $\psi$ is given by $\langle \psi | A | \psi \rangle$, which is a bilinear form.
  • In Machine Learning, in Support Vector Machines (SVMs), bilinear forms define kernel functions that measure similarity between data points.
  • In Differential Geometry, the metric tensor, which defines distances and angles on a manifold, is a bilinear form on the tangent space.
  • In Economics, payoff functions in certain Game Theoretic problems can be modeled as bilinear forms of players' strategies.
  • In Physics, interactions between electric and magnetic fields can be expressed using bilinear forms.

Broad applications aside, the lack of a specialized primitive for bilinear forms in BLAS and LAPACK means significant performance overhead. A $vector * matrix * vector$ product is a scalar, whereas its constituent parts ($vector * matrix$ and $matrix * vector$) are vectors:

  • They need memory to be stored in: $O(n)$ allocation.
  • The data will be written to memory and read back, wasting CPU cycles.

SimSIMD doesn't produce intermediate vector results, like a @ M @ b, but computes the bilinear form directly.

Set Intersection, Galloping, and Binary Search

The set intersection operation is generally defined as the number of elements that are common between two sets, represented as sorted arrays of integers. The most common way to compute it is a linear scan:

size_t intersection_size(int *a, int *b, size_t n, size_t m) {
    size_t i = 0, j = 0, count = 0;
    while (i < n && j < m) {
        if (a[i] < b[j]) i++;
        else if (a[i] > b[j]) j++;
        else i++, j++, count++;
    }
    return count;
}

Alternatively, one can use the binary search to find the elements in the second array that are present in the first one. On every step the checked region of the second array is halved, which is called the galloping search. It's faster, but only when large arrays of very different sizes are intersected. Third approach is to use the SIMD instructions to compare multiple elements at once:

  • Using string-intersection instructions on x86, like pcmpestrm.
  • Using integer-intersection instructions in AVX-512, like vp2intersectd.
  • Using vanilla equality checks present in all SIMD instruction sets.

After benchmarking, the last approach was chosen, as it's the most flexible and often the fastest.

Complex Dot Products, Conjugate Dot Products, and Complex Numbers

Complex dot products are a generalization of the dot product to complex numbers. They are supported by most BLAS packages, but almost never in mixed precision. SimSIMD defines dot and vdot kernels as:

\text{dot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot b_i
\text{vdot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot \bar{b_i}

Where $\bar{b_i}$ is the complex conjugate of $b_i$. Putting that into Python code for scalar arrays:

def dot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br - ai * bi
        ab_imaginary += ar * bi + ai * br
    return ab_real, ab_imaginary

def vdot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br + ai * bi
        ab_imaginary += ar * bi - ai * br
    return ab_real, ab_imaginary

Logarithms in Kullback-Leibler & Jensen–Shannon Divergences

The Kullback-Leibler divergence is a measure of how one probability distribution diverges from a second, expected probability distribution. Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, which can be used as a distance metric between probability distributions.

\text{KL}(P || Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}
\text{JS}(P, Q) = \frac{1}{2} \text{KL}(P || M) + \frac{1}{2} \text{KL}(Q || M), M = \frac{P + Q}{2}

Both functions are defined for non-negative numbers, and the logarithm is a key part of their computation.

Mixed Precision in Fused-Multiply-Add and Weighted Sums

The Fused-Multiply-Add (FMA) operation is a single operation that combines element-wise multiplication and addition with different scaling factors. The Weighted Sum is it's simplified variant without element-wise multiplication.

\text{FMA}_i(A, B, C, \alpha, \beta) = \alpha \cdot A_i \cdot B_i + \beta \cdot C_i
\text{WSum}_i(A, B, \alpha, \beta) = \alpha \cdot A_i + \beta \cdot B_i

In NumPy terms, the implementation may look like:

import numpy as np
def wsum(A: np.ndarray, B: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype, "Input types must match and affect the output style"
    return (Alpha * A + Beta * B).astype(A.dtype)
def fma(A: np.ndarray, B: np.ndarray, C: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype and A.dtype == C.dtype, "Input types must match and affect the output style"
    return (Alpha * A * B + Beta * C).astype(A.dtype)

The tricky part is implementing those operations in mixed precision, where the scaling factors are of different precision than the input and output vectors. SimSIMD uses double-precision floating-point scaling factors for any input and output precision, including i8 and u8 integers and f16 and bf16 floats. Depending on the generation of the CPU, given native support for f16 addition and multiplication, the f16 temporaries are used for i8 and u8 multiplication, scaling, and addition. For bf16, native support is generally limited to dot-products with subsequent partial accumulation, which is not enough for the FMA and WSum operations, so f32 is used as a temporary.

Auto-Vectorization & Loop Unrolling

On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12. GCC handles single-precision float but might not be the best choice for int8 and _Float16 arrays, which have been part of the C language since 2011.

Kind GCC 12 f32 GCC 12 f16 SimSIMD f16 f16 improvement
Inner Product 3,810 K/s 192 K/s 5,990 K/s 31 x
Cosine Distance 3,280 K/s 336 K/s 6,880 K/s 20 x
Euclidean Distance ² 4,620 K/s 147 K/s 5,320 K/s 36 x
Jensen-Shannon Divergence 1,180 K/s 18 K/s 2,140 K/s 118 x

Dynamic Dispatch

Most popular software is precompiled and distributed with fairly conservative CPU optimizations, to ensure compatibility with older hardware. Database Management platforms, like ClickHouse, and Web Browsers, like Google Chrome,need to run on billions of devices, and they can't afford to be picky about the CPU features. For such users SimSIMD provides a dynamic dispatch mechanism, which selects the most advanced micro-kernel for the current CPU at runtime.

Subset F CD ER PF 4FMAPS 4VNNIW VPOPCNTDQ VL DQ BW IFMA VBMI VNNI BF16 VBMI2 BITALG VPCLMULQDQ GFNI VAES VP2INTERSECT FP16
Knights Landing (Xeon Phi x200, 2016) Yes Yes No
Knights Mill (Xeon Phi x205, 2017) Yes No
Skylake-SP, Skylake-X (2017) No No Yes No
Cannon Lake (2018) Yes No
Cascade Lake (2019) No Yes No
Cooper Lake (2020) Yes No
Ice Lake (2019) Yes No Yes No
Tiger Lake (2020) Yes No
Rocket Lake (2021) No
Alder Lake (2021) Partial Partial
Zen 4 (2022) Yes Yes No
Sapphire Rapids (2023) No Yes
Zen 5 (2024) Yes No

You can compile SimSIMD on an old CPU, like Intel Haswell, and run it on a new one, like AMD Genoa, and it will automatically use the most advanced instructions available. Reverse is also true, you can compile on a new CPU and run on an old one, and it will automatically fall back to the most basic instructions. Moreover, the very first time you prove for CPU capabilities with simsimd_capabilities(), it initializes the dynamic dispatch mechanism, and all subsequent calls will be faster and won't face race conditions in multi-threaded environments.

Target Specific Backends

SimSIMD exposes all kernels for all backends, and you can select the most advanced one for the current CPU without relying on built-in dispatch mechanisms. That's handy for testing and benchmarking, but also in case you want to dispatch a very specific kernel for a very specific CPU, bypassing SimSIMD assignment logic. All of the function names follow the same pattern: simsimd_{function}_{type}_{backend}.

  • The backend can be serial, haswell, skylake, ice, genoa, sapphire, turin, neon, or sve.
  • The type can be f64, f32, f16, bf16, f64c, f32c, f16c, bf16c, i8, or b8.
  • The function can be dot, vdot, cos, l2sq, hamming, jaccard, kl, js, or intersect.

To avoid hard-coding the backend, you can use the simsimd_metric_punned_t to pun the function pointer and the simsimd_capabilities function to get the available backends at runtime. To match all the function names, consider a RegEx:

SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(

On Linux, you can use the following command to list all unique functions:

$ grep -oP 'SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(' include/simsimd/*.h | sort | uniq
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simsimd-5.9.9.tar.gz (152.5 kB view details)

Uploaded Source

Built Distributions

simsimd-5.9.9-cp312-cp312-win_arm64.whl (54.3 kB view details)

Uploaded CPython 3.12 Windows ARM64

simsimd-5.9.9-cp312-cp312-win_amd64.whl (82.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

simsimd-5.9.9-cp312-cp312-win32.whl (51.8 kB view details)

Uploaded CPython 3.12 Windows x86

simsimd-5.9.9-cp312-cp312-musllinux_1_2_x86_64.whl (624.7 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

simsimd-5.9.9-cp312-cp312-musllinux_1_2_s390x.whl (306.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

simsimd-5.9.9-cp312-cp312-musllinux_1_2_ppc64le.whl (362.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

simsimd-5.9.9-cp312-cp312-musllinux_1_2_i686.whl (318.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

simsimd-5.9.9-cp312-cp312-musllinux_1_2_armv7l.whl (259.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.9-cp312-cp312-musllinux_1_2_aarch64.whl (438.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

simsimd-5.9.9-cp312-cp312-manylinux_2_28_x86_64.whl (681.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

simsimd-5.9.9-cp312-cp312-manylinux_2_28_aarch64.whl (396.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

simsimd-5.9.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

simsimd-5.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (227.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

simsimd-5.9.9-cp312-cp312-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

simsimd-5.9.9-cp312-cp312-macosx_10_13_x86_64.whl (91.7 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

simsimd-5.9.9-cp312-cp312-macosx_10_13_universal2.whl (148.8 kB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

simsimd-5.9.9-cp311-cp311-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.11 Windows ARM64

simsimd-5.9.9-cp311-cp311-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

simsimd-5.9.9-cp311-cp311-win32.whl (51.8 kB view details)

Uploaded CPython 3.11 Windows x86

simsimd-5.9.9-cp311-cp311-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

simsimd-5.9.9-cp311-cp311-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

simsimd-5.9.9-cp311-cp311-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

simsimd-5.9.9-cp311-cp311-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

simsimd-5.9.9-cp311-cp311-musllinux_1_2_armv7l.whl (258.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.9-cp311-cp311-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

simsimd-5.9.9-cp311-cp311-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

simsimd-5.9.9-cp311-cp311-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

simsimd-5.9.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

simsimd-5.9.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

simsimd-5.9.9-cp311-cp311-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

simsimd-5.9.9-cp311-cp311-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

simsimd-5.9.9-cp311-cp311-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.9-cp310-cp310-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.10 Windows ARM64

simsimd-5.9.9-cp310-cp310-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

simsimd-5.9.9-cp310-cp310-win32.whl (51.8 kB view details)

Uploaded CPython 3.10 Windows x86

simsimd-5.9.9-cp310-cp310-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

simsimd-5.9.9-cp310-cp310-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

simsimd-5.9.9-cp310-cp310-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

simsimd-5.9.9-cp310-cp310-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

simsimd-5.9.9-cp310-cp310-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.9-cp310-cp310-musllinux_1_2_aarch64.whl (438.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

simsimd-5.9.9-cp310-cp310-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

simsimd-5.9.9-cp310-cp310-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

simsimd-5.9.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

simsimd-5.9.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

simsimd-5.9.9-cp310-cp310-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

simsimd-5.9.9-cp310-cp310-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

simsimd-5.9.9-cp310-cp310-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.9-cp39-cp39-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.9 Windows ARM64

simsimd-5.9.9-cp39-cp39-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

simsimd-5.9.9-cp39-cp39-win32.whl (51.7 kB view details)

Uploaded CPython 3.9 Windows x86

simsimd-5.9.9-cp39-cp39-musllinux_1_2_x86_64.whl (624.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

simsimd-5.9.9-cp39-cp39-musllinux_1_2_s390x.whl (305.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

simsimd-5.9.9-cp39-cp39-musllinux_1_2_ppc64le.whl (361.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

simsimd-5.9.9-cp39-cp39-musllinux_1_2_i686.whl (318.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

simsimd-5.9.9-cp39-cp39-musllinux_1_2_armv7l.whl (258.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.9-cp39-cp39-musllinux_1_2_aarch64.whl (438.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

simsimd-5.9.9-cp39-cp39-manylinux_2_28_x86_64.whl (680.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

simsimd-5.9.9-cp39-cp39-manylinux_2_28_aarch64.whl (396.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

simsimd-5.9.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (215.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

simsimd-5.9.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (270.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (226.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

simsimd-5.9.9-cp39-cp39-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

simsimd-5.9.9-cp39-cp39-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

simsimd-5.9.9-cp39-cp39-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.9-cp38-cp38-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

simsimd-5.9.9-cp38-cp38-win32.whl (51.7 kB view details)

Uploaded CPython 3.8 Windows x86

simsimd-5.9.9-cp38-cp38-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

simsimd-5.9.9-cp38-cp38-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

simsimd-5.9.9-cp38-cp38-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

simsimd-5.9.9-cp38-cp38-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

simsimd-5.9.9-cp38-cp38-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.9-cp38-cp38-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

simsimd-5.9.9-cp38-cp38-manylinux_2_28_x86_64.whl (681.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

simsimd-5.9.9-cp38-cp38-manylinux_2_28_aarch64.whl (397.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

simsimd-5.9.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

simsimd-5.9.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (227.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

simsimd-5.9.9-cp38-cp38-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

simsimd-5.9.9-cp38-cp38-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

simsimd-5.9.9-cp38-cp38-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.9-cp37-cp37m-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

simsimd-5.9.9-cp37-cp37m-win32.whl (51.7 kB view details)

Uploaded CPython 3.7m Windows x86

simsimd-5.9.9-cp37-cp37m-musllinux_1_2_x86_64.whl (623.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

simsimd-5.9.9-cp37-cp37m-musllinux_1_2_s390x.whl (305.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ s390x

simsimd-5.9.9-cp37-cp37m-musllinux_1_2_ppc64le.whl (361.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ppc64le

simsimd-5.9.9-cp37-cp37m-musllinux_1_2_i686.whl (318.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

simsimd-5.9.9-cp37-cp37m-musllinux_1_2_armv7l.whl (258.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARMv7l

simsimd-5.9.9-cp37-cp37m-musllinux_1_2_aarch64.whl (437.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

simsimd-5.9.9-cp37-cp37m-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

simsimd-5.9.9-cp37-cp37m-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

simsimd-5.9.9-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

simsimd-5.9.9-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

simsimd-5.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (227.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

simsimd-5.9.9-cp37-cp37m-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file simsimd-5.9.9.tar.gz.

File metadata

  • Download URL: simsimd-5.9.9.tar.gz
  • Upload date:
  • Size: 152.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9.tar.gz
Algorithm Hash digest
SHA256 da3139f23dc5be7c13e2e7b2d2289d37801947a4e0cda4918b7e8367dcf179dd
MD5 b4425628e29ddc0035ecc445ac872868
BLAKE2b-256 84ebc8af7f2f4beb9737aa772b2edec5e645055e519309fa87c68cf754431ae2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9.tar.gz:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9.tar.gz
    • Subject digest: da3139f23dc5be7c13e2e7b2d2289d37801947a4e0cda4918b7e8367dcf179dd
    • Transparency log index: 145303584
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 56391cedfd4c4e6151811260e8937961a400e2ac96c540c42149ece836489b41
MD5 aaf3b9595446c6b7233ac44a412fb1e8
BLAKE2b-256 37e2dfbc70f06bc5f9e0292b6861dccd8448bb03b7eb0407c9dab66b22dc8ab4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-win_arm64.whl
    • Subject digest: 56391cedfd4c4e6151811260e8937961a400e2ac96c540c42149ece836489b41
    • Transparency log index: 145303621
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2752968af31c07dd47f1192b924d2bf76ccecb555beb89940e323c01f7ef859c
MD5 69ad67da7ccab465fe791a8da54f72ad
BLAKE2b-256 3bf28089cdf2351ce5bec11965f7f60e3e103da236e560ef3144030e37705468

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-win_amd64.whl
    • Subject digest: 2752968af31c07dd47f1192b924d2bf76ccecb555beb89940e323c01f7ef859c
    • Transparency log index: 145303689
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-win32.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp312-cp312-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5230cb7484874eafeae6cb6f5fc2edec3d20506241019a27f0c0b895e3e58649
MD5 4b237a83ffbc6724d71dc5468e1829e2
BLAKE2b-256 539fbbc49f0804f70cc1288b4eecc63d38f09adb7aee01ee6ff5b358686270a2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-win32.whl
    • Subject digest: 5230cb7484874eafeae6cb6f5fc2edec3d20506241019a27f0c0b895e3e58649
    • Transparency log index: 145303639
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 460a92f71cd645022e37b656a66418799c7263a663e89a354c9d7d8e96fd0daf
MD5 1dad948b1722c8a52f1fbf4e6cb9e5a0
BLAKE2b-256 207225b92c47602cba91a28a879da8e268d3f0f01c3398b63d68fb74130bce10

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-musllinux_1_2_x86_64.whl
    • Subject digest: 460a92f71cd645022e37b656a66418799c7263a663e89a354c9d7d8e96fd0daf
    • Transparency log index: 145303700
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 e73f8c80a5b0ca569ff00a100e49775666ede0c94549b9e215885c631139d85b
MD5 fb34a1d6d69b0ffd44d7b09fa1f5a31b
BLAKE2b-256 f7ba3726a76dbc66bed4ef06dc78c3f83eaa3aa732ce12b1dc15b8e97c3da3c1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-musllinux_1_2_s390x.whl
    • Subject digest: e73f8c80a5b0ca569ff00a100e49775666ede0c94549b9e215885c631139d85b
    • Transparency log index: 145303662
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 6811b0a14e1b2e11964108d6fa36a3aa376b42b056757ff89553e15a4d8d6f81
MD5 277ce027026e8ecf9c8b3a459437fc76
BLAKE2b-256 32e68b520d61df37e88bbe5072e303543c116be9b90455491934d5aca2ecbd01

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-musllinux_1_2_ppc64le.whl
    • Subject digest: 6811b0a14e1b2e11964108d6fa36a3aa376b42b056757ff89553e15a4d8d6f81
    • Transparency log index: 145303652
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 dbd3d9fd54131d696234ff29bc53c128d34959f216764fd44b50d64d3d39744f
MD5 ebad2a57e8b21cd393fdf302a4a5021e
BLAKE2b-256 26fce65a463ae8d1346e8d4f190f9e74ea9488707de266e3bc9dfbacb9aa83b5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-musllinux_1_2_i686.whl
    • Subject digest: dbd3d9fd54131d696234ff29bc53c128d34959f216764fd44b50d64d3d39744f
    • Transparency log index: 145303671
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 040bbca9f7aaa4ee685ae0c50facd300aeec68339052d69f493fb6443782e436
MD5 e977b3086b610a9cabdb989465fc8a46
BLAKE2b-256 20b84bcd5a32679ac39734d01eb56227f6ac98b3c81cc71edf3063446f0713ef

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-musllinux_1_2_armv7l.whl
    • Subject digest: 040bbca9f7aaa4ee685ae0c50facd300aeec68339052d69f493fb6443782e436
    • Transparency log index: 145303603
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bc021ce8c09355b18985fa636f5a9e4dd110e687be72f7400a954fc998281891
MD5 ee369290e0f935018d0b8e1fa7225353
BLAKE2b-256 ce6011dc2217d7d4d004a2be9f3e5fa53e56c808401f91ee89ea0cf2eb771464

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-musllinux_1_2_aarch64.whl
    • Subject digest: bc021ce8c09355b18985fa636f5a9e4dd110e687be72f7400a954fc998281891
    • Transparency log index: 145303710
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 62c152a6fa6feaac35480be06d8e66c781cae7d1e49db5f0eb648b18ca7e8081
MD5 cd3a9a608f904f75e1fd39043447112d
BLAKE2b-256 c38355bed2b37baf72740d5051b8702daa3f8c04cd38fcb263768d6c3b516f25

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-manylinux_2_28_x86_64.whl
    • Subject digest: 62c152a6fa6feaac35480be06d8e66c781cae7d1e49db5f0eb648b18ca7e8081
    • Transparency log index: 145303661
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c58297b3a35867f090a592f8ad20618d771d712a8267896413da0c4c6691c748
MD5 91a04c469a0f1fcb2d1772db263d573e
BLAKE2b-256 c65a002e94507632224631a980f231be803c152b7e94f03d2a054944db7af53f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-manylinux_2_28_aarch64.whl
    • Subject digest: c58297b3a35867f090a592f8ad20618d771d712a8267896413da0c4c6691c748
    • Transparency log index: 145303637
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 20afb86a627213943a0b6872e7b926d2fb680becd81f8bdf048458db6f5e5480
MD5 78ab4e0bafb569159a5fa39a3da4cde1
BLAKE2b-256 c1b254a032685d7ba1933bb73372df09d7254ef4d2ced3b341fc8d5d1498220e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 20afb86a627213943a0b6872e7b926d2fb680becd81f8bdf048458db6f5e5480
    • Transparency log index: 145303679
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f33846f5c6d733c9207384133742864c77acfde7a0850313151bc235549a6bfb
MD5 dc1ff1dc4993f6888ef7fedaae0c9255
BLAKE2b-256 a5bcd1b3da6152d14340a98b9c3a12a2a7b9b738629dc5b540f9a358e2f0750b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: f33846f5c6d733c9207384133742864c77acfde7a0850313151bc235549a6bfb
    • Transparency log index: 145303701
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6f9500a507d0cf7250a71374b708d9a0bf0c6d5289df78af1da1158fab6fd038
MD5 7c84ccec4e1cc47784212397b2775452
BLAKE2b-256 98dc8f4fb11fc0f8de9ec4e3e45e66708cafb28fce2dbe6e9896121184333714

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 6f9500a507d0cf7250a71374b708d9a0bf0c6d5289df78af1da1158fab6fd038
    • Transparency log index: 145303648
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c4299af0813a0d881c08c98dcff522b4d9875bb913d2cbf9cb875fbfe20cef1
MD5 3d21d00771753e21aedb19a7136c5a0f
BLAKE2b-256 3eb247854f1a27f28b7d27254ea759ebb49b7b496dae135b67642082f1ea4432

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-macosx_11_0_arm64.whl
    • Subject digest: 5c4299af0813a0d881c08c98dcff522b4d9875bb913d2cbf9cb875fbfe20cef1
    • Transparency log index: 145303687
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 272caa2b464101646b8bdae4d4218ecea4d789836212ba1e9a4c16f73ad1bdc9
MD5 d3731d85ac3a9d55a5d3eb26e406007b
BLAKE2b-256 b75624163526aa07e569cdb380a302b7d2eba8d81426d2c1d5a2ba6572e39143

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-macosx_10_13_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-macosx_10_13_x86_64.whl
    • Subject digest: 272caa2b464101646b8bdae4d4218ecea4d789836212ba1e9a4c16f73ad1bdc9
    • Transparency log index: 145303653
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 9f6c2a177dd59f1a132bb64d1bddd8c527f973466e0d2aa11c0e703fb5653bd0
MD5 7a18709f11ae86ad272d0f34f2a7f6af
BLAKE2b-256 8768bceb4144495e91c42f26c660c50676722bb62b59bdea77d9210c4af6a632

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp312-cp312-macosx_10_13_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp312-cp312-macosx_10_13_universal2.whl
    • Subject digest: 9f6c2a177dd59f1a132bb64d1bddd8c527f973466e0d2aa11c0e703fb5653bd0
    • Transparency log index: 145303702
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 864ff2352d5c0ff76f58cdcb08eaae3b12d90461204e7b4074e5cef0cba8f755
MD5 8713f4ac0d382517f4e37833fba064e6
BLAKE2b-256 38ed99a798b6f7c9bd70c816d0feb1e22dbbcab4979d94bc4cd1812804e8873d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-win_arm64.whl
    • Subject digest: 864ff2352d5c0ff76f58cdcb08eaae3b12d90461204e7b4074e5cef0cba8f755
    • Transparency log index: 145303627
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e4e6ac130762f0f7be13fa761a8311f477a6969c130494b8db3a51ecf97ae034
MD5 817eaeaef243cea72ffc692de2b7139b
BLAKE2b-256 bb5f4fb7a398c5247f89622b6f8ad9c6c6e5011222be994873e7d1044a6f5a98

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-win_amd64.whl
    • Subject digest: e4e6ac130762f0f7be13fa761a8311f477a6969c130494b8db3a51ecf97ae034
    • Transparency log index: 145303644
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-win32.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp311-cp311-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b6ca94512953364ddecac91734287a22a0d3273308b7b9129c92f7125688de78
MD5 029426deb56ebbd3589e3c0e7132d999
BLAKE2b-256 d1545b778e8e381730eb6ba7fe956c5da3a6e4a24055b171dfb55af713dce6d6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-win32.whl
    • Subject digest: b6ca94512953364ddecac91734287a22a0d3273308b7b9129c92f7125688de78
    • Transparency log index: 145303656
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b45006fb6b881c73a096c3f13cfe7bc831aa2fac6a4b228969ce5ab6f2f172e6
MD5 2ff902fbfbe773b5ff6d7673960924df
BLAKE2b-256 571091610b13d98cfb492f9201ed3feb94e3db8a9150f09f634ae3ce26541d8d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-musllinux_1_2_x86_64.whl
    • Subject digest: b45006fb6b881c73a096c3f13cfe7bc831aa2fac6a4b228969ce5ab6f2f172e6
    • Transparency log index: 145303667
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 c9615d6a4d045c1d74f6b6620bb17b0b38c1c70b8f12d52408342ce49821d5eb
MD5 372190c101d12cab26b320c1a2bb7949
BLAKE2b-256 5df894e7272bf62dae92f2a1c2b549b9a73622c8494487774a3b2ddc25bf60a7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-musllinux_1_2_s390x.whl
    • Subject digest: c9615d6a4d045c1d74f6b6620bb17b0b38c1c70b8f12d52408342ce49821d5eb
    • Transparency log index: 145303706
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 968f0f6c4617e66dd356b18e38af5be0076bbd5d1c6fd69ced6cb8e331c330c8
MD5 20b191de400ba3169726bae46a054d1f
BLAKE2b-256 c3c4337efb7e7dcbe42c0d17bfdefbe24853d77a8707b7969a210c733e7f5949

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-musllinux_1_2_ppc64le.whl
    • Subject digest: 968f0f6c4617e66dd356b18e38af5be0076bbd5d1c6fd69ced6cb8e331c330c8
    • Transparency log index: 145303716
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5b315b8090fd96e19bdd25a87a1e9c54d0d169f13539e6a786af58eb2b9a5962
MD5 41ac3546c39464aa766139e0c900b0cb
BLAKE2b-256 6a362ef95d1fcb6345d3fb8e277c24b3165161f778e4ac0e423f184801e39d8f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-musllinux_1_2_i686.whl
    • Subject digest: 5b315b8090fd96e19bdd25a87a1e9c54d0d169f13539e6a786af58eb2b9a5962
    • Transparency log index: 145303654
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3b6b3dd65b7320d91af5d5e84a9261a86a969c38afd11dec65bf421cdd39318d
MD5 72bd32d47c04e135ff249c58b026f132
BLAKE2b-256 9767823f9c5337f42cbd7e82a12625dff469b9fd373fac3d0936bd9772530850

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-musllinux_1_2_armv7l.whl
    • Subject digest: 3b6b3dd65b7320d91af5d5e84a9261a86a969c38afd11dec65bf421cdd39318d
    • Transparency log index: 145303631
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7847b7bc7f0436d6eb4ba642e055cdba77ff86cc56f92a3bd3660d49353203f7
MD5 c9bf9faf6e2df6bbabbf2342dbdeab6f
BLAKE2b-256 8d2321c6fa60344c1bd514878ddaef068a88cc5b525019cb972d84fb63cfad44

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-musllinux_1_2_aarch64.whl
    • Subject digest: 7847b7bc7f0436d6eb4ba642e055cdba77ff86cc56f92a3bd3660d49353203f7
    • Transparency log index: 145303686
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 644d3983165336d1fcaee64004714be56e9333a49d661cd6e525f1b77ed0a28c
MD5 7175cfd94d6215e92c5b53aafe53f271
BLAKE2b-256 79a6a8fedb6a036dd34bc0745b2de495209795e71154d2ddcce5ee557ea6390b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-manylinux_2_28_x86_64.whl
    • Subject digest: 644d3983165336d1fcaee64004714be56e9333a49d661cd6e525f1b77ed0a28c
    • Transparency log index: 145303649
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e93c5b3f545deda71254867bb8ef461f1098c695e42f9cff5e39652377b23c7c
MD5 45e7320e1d4a3e20d17a1fdd339bbb5d
BLAKE2b-256 75bd4b6aa5abefd946c93a832dd709347c8a994243db19e9dfe95fb427ec5a23

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-manylinux_2_28_aarch64.whl
    • Subject digest: e93c5b3f545deda71254867bb8ef461f1098c695e42f9cff5e39652377b23c7c
    • Transparency log index: 145303598
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a8db9fe93d02a2308616cd5e794329ed3dcec8b303b22883b3f0e9e6b0910c69
MD5 14a4641cdb25523ce0a8a88677ab0388
BLAKE2b-256 5303254829ddb1f13f1668999292167a89b4b1fe0afb9f49db158cccbc4396ac

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: a8db9fe93d02a2308616cd5e794329ed3dcec8b303b22883b3f0e9e6b0910c69
    • Transparency log index: 145303602
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6ebba4b309a4fb2d38cb277b801855066e683fa6040ecab92282ad29664f93e0
MD5 58030971824e8f5fd8b82298ea347703
BLAKE2b-256 c52792f3e26c55d8b1ef98f54336096d4a8db6611d014bcc551246507518bfe5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 6ebba4b309a4fb2d38cb277b801855066e683fa6040ecab92282ad29664f93e0
    • Transparency log index: 145303717
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e046dc9a49b5ca79d25ee585aadf17af7c68e259cd6b1a14bb4ea61476e3ab2
MD5 095d79aa0309b31c14b9ebe01e5ddc0c
BLAKE2b-256 0bd8700a45b58d87d52e011dca4ace93b7d1671a09e680f1b88bb28fefcd5ac1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 8e046dc9a49b5ca79d25ee585aadf17af7c68e259cd6b1a14bb4ea61476e3ab2
    • Transparency log index: 145303607
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e8b4810b25bbe037d085cff6c89bd6353de5940c5ccd0f8b6403b83304fe1b1
MD5 58ead6060506c5282a90a97143159ef5
BLAKE2b-256 f0255d8e682a1eb8dda504e9a59ceb1a26e541a648c9986fb5ba71d9073420c3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-macosx_11_0_arm64.whl
    • Subject digest: 2e8b4810b25bbe037d085cff6c89bd6353de5940c5ccd0f8b6403b83304fe1b1
    • Transparency log index: 145303609
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8f93fe295c5d69ff6f11445efc7724b39c244c4421dd36c8df913e50c27e600
MD5 afce5cde52ab9c7bb8d323540138df7f
BLAKE2b-256 a830b72ac8936c063cafb36e8fc0a1ad4dd7d34bf4470f857b8a8468f4c1e577

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-macosx_10_9_x86_64.whl
    • Subject digest: e8f93fe295c5d69ff6f11445efc7724b39c244c4421dd36c8df913e50c27e600
    • Transparency log index: 145303643
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 24c8fa4f31b1346534e4c1bc097edaaa71a967df59f683a7e02c59f1ab966f17
MD5 6d57e201322f364184fbeb8cc86b93f3
BLAKE2b-256 f550cf09d14edd8af4b74a7a2faec67b91de4bbe4e9e5c1babdb37e482892b9d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp311-cp311-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp311-cp311-macosx_10_9_universal2.whl
    • Subject digest: 24c8fa4f31b1346534e4c1bc097edaaa71a967df59f683a7e02c59f1ab966f17
    • Transparency log index: 145303646
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 393cf406963c88a6287a53fb89b5a37c4c0eba6862edf507633df413ccbe39ed
MD5 b5611feae52225dfee451c822f223741
BLAKE2b-256 df5c76d90c8d5942732ea3bb226be70c74d99b9c6781b620f7c9012ad8356bfe

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-win_arm64.whl
    • Subject digest: 393cf406963c88a6287a53fb89b5a37c4c0eba6862edf507633df413ccbe39ed
    • Transparency log index: 145303600
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5f4ae9194e811f0aa75381f061593e797962425a9d7a78fb39621ea807ae9484
MD5 9155b79e028b698906dd49e8579de2e0
BLAKE2b-256 5498f68f9a5a37bcb895848bfa831eac52ce2d7a9705e6d94483bf3e9a8a1e5e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-win_amd64.whl
    • Subject digest: 5f4ae9194e811f0aa75381f061593e797962425a9d7a78fb39621ea807ae9484
    • Transparency log index: 145303592
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-win32.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp310-cp310-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d97754fa93b8ad64e7c919c6b9fad667677e7b029a76ca213e36a19a63f7e078
MD5 e3c9514a2dadd061610fd5683a778086
BLAKE2b-256 31848e3de683b2fc763bb69d0f8bb08399d8805e5e9c891482bf150c8f18523e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-win32.whl
    • Subject digest: d97754fa93b8ad64e7c919c6b9fad667677e7b029a76ca213e36a19a63f7e078
    • Transparency log index: 145303669
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 254fbfdd2c294a623facc2b2f67c0d8ade6d796c2e1965b6885ed6ba9e0eadb5
MD5 8aa19db3d12dfc285b00a968185f75c0
BLAKE2b-256 a89ff702cd14d579662718e788e4c8bc01f0e1038c5858f4b6e42d2cedcf04cc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-musllinux_1_2_x86_64.whl
    • Subject digest: 254fbfdd2c294a623facc2b2f67c0d8ade6d796c2e1965b6885ed6ba9e0eadb5
    • Transparency log index: 145303622
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 6fa589efa7ec106e866d05ab5d482e4f0b997fd37fb88b9890759e144c37b37c
MD5 ff17be539cef408ced56b5664691536b
BLAKE2b-256 6257e64322bd0eb63407e98d0564c17bfd9101e0c6956c8504c1699d78900b20

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-musllinux_1_2_s390x.whl
    • Subject digest: 6fa589efa7ec106e866d05ab5d482e4f0b997fd37fb88b9890759e144c37b37c
    • Transparency log index: 145303699
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 94ca500a8c7b1d721ccf64a52da115c61b3dcbfedc2836caf9a238b1a2fc2532
MD5 1a114beeb75569c51744db8d7e687dd8
BLAKE2b-256 5755a8bb88084cd130f59f028b9c53c99a480baf60555ccdb312fd68a576c8b0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-musllinux_1_2_ppc64le.whl
    • Subject digest: 94ca500a8c7b1d721ccf64a52da115c61b3dcbfedc2836caf9a238b1a2fc2532
    • Transparency log index: 145303678
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 fa68ec7b1674dc1da1448eb0e79fc0e8778953b44fffe6246533f7dd579db52a
MD5 21ba9be7c0f05681d74bd64acf6c998b
BLAKE2b-256 51bd3b102d799ce258b6a8a1cb0dc6888bddfc612c0890cf8b41a6ea3980e81b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-musllinux_1_2_i686.whl
    • Subject digest: fa68ec7b1674dc1da1448eb0e79fc0e8778953b44fffe6246533f7dd579db52a
    • Transparency log index: 145303589
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 facac3b2506fffde1126b9d8fec6ca337cd6d71a8a95cd06a0a5af812f911a8e
MD5 bf7594c2a1f7de02d059aa6224b133ec
BLAKE2b-256 a8c550f7e409f92fbd9edab7d6cf91c0dc2e00c522fdc7ea5ab74c340bcb673b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-musllinux_1_2_armv7l.whl
    • Subject digest: facac3b2506fffde1126b9d8fec6ca337cd6d71a8a95cd06a0a5af812f911a8e
    • Transparency log index: 145303629
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b1daccc554ba88ee2bf07c3271774245f9972a556189041322ef7bdd14a633f5
MD5 9b5eaa321ba1ff9fdd0b9f3280c3b81b
BLAKE2b-256 25ee5c39a47f95e9e097d9fe8d340040da605c25b1af3edeb4ab7b45d2c45978

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-musllinux_1_2_aarch64.whl
    • Subject digest: b1daccc554ba88ee2bf07c3271774245f9972a556189041322ef7bdd14a633f5
    • Transparency log index: 145303660
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4e30f0de20fb99c55d8a96c80d9e0641532d12d1a562a0c6d62193ca40b8af9c
MD5 7a7835fb764896ac32e847649c29da99
BLAKE2b-256 31fb68505e14c57956fd69ceed89bb74db95eb01a03d81d6d19befa558fa55b0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-manylinux_2_28_x86_64.whl
    • Subject digest: 4e30f0de20fb99c55d8a96c80d9e0641532d12d1a562a0c6d62193ca40b8af9c
    • Transparency log index: 145303587
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 10e3987d2581dfd1562221542a51f9d2e1a0b161ccfb018a9597108187e2f6ad
MD5 d1ad4186f3dacc521412b8ac32cea47d
BLAKE2b-256 2291e3b953c3d66151ffed5d1e0602c4386e325dbd4ea90d821c584c85b49997

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-manylinux_2_28_aarch64.whl
    • Subject digest: 10e3987d2581dfd1562221542a51f9d2e1a0b161ccfb018a9597108187e2f6ad
    • Transparency log index: 145303645
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3236374ceccc834cf3d8a04c23a4892fc1b0a73dc966fbf864cf9b9645d4d533
MD5 64f48e4da76e334b3783c11a2e767dc8
BLAKE2b-256 96f68095210e4b420e17f9f04b60e30d558448e11b6d4c66bbc3e52e7be83caf

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 3236374ceccc834cf3d8a04c23a4892fc1b0a73dc966fbf864cf9b9645d4d533
    • Transparency log index: 145303614
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f8f5e5f99972e74978ea5d143b4582efa7cd46e5b9717f1765f7de6b062bcdd2
MD5 9c4f3951d3af35340295f6a7988f9115
BLAKE2b-256 6ad867012db4516b0cc83576ed105290909752516e4d78a89d956344b87cf911

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: f8f5e5f99972e74978ea5d143b4582efa7cd46e5b9717f1765f7de6b062bcdd2
    • Transparency log index: 145303636
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b5d7750ebee5864b80ee792316c32f434ba9e9261f1d1126c912cb2631a4c349
MD5 baa756f29a39f1764c8a1e1928ca6d07
BLAKE2b-256 b230cce62e50924e8ae30583e8609d64b2a92c394dacfc9a902a4c165393c2d6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: b5d7750ebee5864b80ee792316c32f434ba9e9261f1d1126c912cb2631a4c349
    • Transparency log index: 145303657
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6d6e0f9c3e8771263f46f42266d710eeea427fe62f81ee1fb5a3c7f6fc25de7
MD5 a3368efca57184ef81643d566434e6b9
BLAKE2b-256 52b3bafbe2d64ca0b2b4edcf2f2c5a902998b0f34acd85bd033bb23e6d66220f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-macosx_11_0_arm64.whl
    • Subject digest: c6d6e0f9c3e8771263f46f42266d710eeea427fe62f81ee1fb5a3c7f6fc25de7
    • Transparency log index: 145303633
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a43c48773a5e3877b2ae83bb81592e6221fa517218a5b67adafb6b5dc891b63f
MD5 4d8d701fe3d870e96a18ad6aee87c45e
BLAKE2b-256 a0ba6279304f141a425e400dff61cccaa7f024d504ec7f69e25ece40bbe015f9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-macosx_10_9_x86_64.whl
    • Subject digest: a43c48773a5e3877b2ae83bb81592e6221fa517218a5b67adafb6b5dc891b63f
    • Transparency log index: 145303605
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 53d14f051aab09b9a68c2bcf7577d29a9bbf20c47271e151c1f15791ee45b2fa
MD5 fa6f15c804025d5d1586f21d1deae161
BLAKE2b-256 b732a3bda50b11d0798d6c9fd5907baaf4ab6e595ac02dcd3d0ad5eac1f6ea9f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp310-cp310-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp310-cp310-macosx_10_9_universal2.whl
    • Subject digest: 53d14f051aab09b9a68c2bcf7577d29a9bbf20c47271e151c1f15791ee45b2fa
    • Transparency log index: 145303683
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 4ce5f158d64a3c513b76e5d08d32cf538a2a2c9fa2cc5227faa5473bd61afbe2
MD5 695a02037f49f8841f4a7ea2cba57401
BLAKE2b-256 4815aff24886742b5bdc741365a408d1194e1ea60fafb2c139b19d00f00462cf

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-win_arm64.whl
    • Subject digest: 4ce5f158d64a3c513b76e5d08d32cf538a2a2c9fa2cc5227faa5473bd61afbe2
    • Transparency log index: 145303675
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 57a7ca0cea54fddc86ad86eb6aa6a4930117df28dfebad333699cf12696c1aca
MD5 7fed6f9cd38a712f436a949dfd2a2e71
BLAKE2b-256 5fe76f43f7bfaa4d365ffc9c1559c4ecacf5329f1151ef80b179b44d24d1cb26

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-win_amd64.whl
    • Subject digest: 57a7ca0cea54fddc86ad86eb6aa6a4930117df28dfebad333699cf12696c1aca
    • Transparency log index: 145303666
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ca554c1af356c2cd10b2bfc03941b3665899e5aca76c5f7bc142e216bcc3f0d1
MD5 fce89c4a58648ffe24ce846f74d90f23
BLAKE2b-256 30bbed43d4e7d50cb597cfd70cb45d1dd52a40997b31beb9c28dc7382311e956

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-win32.whl
    • Subject digest: ca554c1af356c2cd10b2bfc03941b3665899e5aca76c5f7bc142e216bcc3f0d1
    • Transparency log index: 145303626
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6ef790fd870cb060651728a1de58a5c7ca4751581c3f8d94299cff4e16ffc003
MD5 94da28f36f466f8119bbe414f84ea651
BLAKE2b-256 c9b730824baabd78a75effc1eda3459be972980caede538e5ca37304a0c487e0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-musllinux_1_2_x86_64.whl
    • Subject digest: 6ef790fd870cb060651728a1de58a5c7ca4751581c3f8d94299cff4e16ffc003
    • Transparency log index: 145303604
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 387a1bdd345b4241060cdf5935cd7e2278bb8a4634d694f65539e1502d8206c8
MD5 ca7df82251d87ff01f65afacb329389a
BLAKE2b-256 8a9ec1b445b8897ae46c2ab212d3c7d66172fcef669b18dc3f55ba1a79c587fc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-musllinux_1_2_s390x.whl
    • Subject digest: 387a1bdd345b4241060cdf5935cd7e2278bb8a4634d694f65539e1502d8206c8
    • Transparency log index: 145303619
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 aca06c6a5f4e0d7072d86dfb72d1cea2bd472e633fa9b12d6963210d80d3d3fd
MD5 2786666e141e09b548c321d3a9f939dc
BLAKE2b-256 5f0de7ed5fa0bf6edc3be7e0ecc8921c1e2aa2be2b51e2032324832a08c5e707

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-musllinux_1_2_ppc64le.whl
    • Subject digest: aca06c6a5f4e0d7072d86dfb72d1cea2bd472e633fa9b12d6963210d80d3d3fd
    • Transparency log index: 145303680
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f081424684b29ad225bea423d5af14e4e819a6c7af398405aed3d40deabcb612
MD5 08c3ce5863c6fed08efd4f0473f477cd
BLAKE2b-256 4a7f4e681e0b202e5e088fcf98410870eb203569e54069de71c86bb01e0fbbc7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-musllinux_1_2_i686.whl
    • Subject digest: f081424684b29ad225bea423d5af14e4e819a6c7af398405aed3d40deabcb612
    • Transparency log index: 145303659
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 33f73bcff2adac90d5cc4c8b30699d3c7743407ce72ec8891b5917dc269b4c91
MD5 c28fd86370481b0bb1cb3c37c6c544b1
BLAKE2b-256 2c17228e453cfd3ea9f1d0bf229c3fa0ffa2396c96ab25c6520b2fe39e3c9bf1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-musllinux_1_2_armv7l.whl
    • Subject digest: 33f73bcff2adac90d5cc4c8b30699d3c7743407ce72ec8891b5917dc269b4c91
    • Transparency log index: 145303650
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1d095262b2043323a9fcf5a8782b6cb286e2b50f77b9d4f1a1f164cb5bb036b5
MD5 d5a298cc0fedb195eadff488d3de104e
BLAKE2b-256 959b9d7a975c4b7b74d28485d96ed225c274934455b272b76718adca8764c110

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-musllinux_1_2_aarch64.whl
    • Subject digest: 1d095262b2043323a9fcf5a8782b6cb286e2b50f77b9d4f1a1f164cb5bb036b5
    • Transparency log index: 145303641
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0af40e408e14df577c6fd4ea0c59c122f74fa80fa9aa4e873446ed10e1abe890
MD5 22e963195cd8c135721ea57f15446bc3
BLAKE2b-256 ef64d96f90f7d6204673b5c23b0b9b9dab5516e20b6a132acdb07cdaef2d8739

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-manylinux_2_28_x86_64.whl
    • Subject digest: 0af40e408e14df577c6fd4ea0c59c122f74fa80fa9aa4e873446ed10e1abe890
    • Transparency log index: 145303682
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 db2a69e3b1417fdfa7c5222210f6be6862320df32007dccf649dd00fa056eef9
MD5 594ceae1b53664c5f3f52c4edc0a8a6d
BLAKE2b-256 08caaa83b6f31cbf9d6019c99f79fdd63239c3e86d976d2789413cc49a399439

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-manylinux_2_28_aarch64.whl
    • Subject digest: db2a69e3b1417fdfa7c5222210f6be6862320df32007dccf649dd00fa056eef9
    • Transparency log index: 145303663
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cfcedead92b029cec2320587a11c3300e42b1358b67a1cfa56153fc7a678ed10
MD5 81498af32f7f523faa2859912e3e4b20
BLAKE2b-256 ab164fc1fb534f0bef5d869e775aaa4116983f8695dba97dfdc0b0e19bb399ab

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: cfcedead92b029cec2320587a11c3300e42b1358b67a1cfa56153fc7a678ed10
    • Transparency log index: 145303613
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7bcddd527e604e907f0f55e62e5a7085604bde17bbb50fe62c19cf2a08ad8412
MD5 81d84f61522cd76594d7ee03255494e4
BLAKE2b-256 068e7693a190d8004f87c400e2d2ddab22207cbc15e66a15937dd4264419b8d9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 7bcddd527e604e907f0f55e62e5a7085604bde17bbb50fe62c19cf2a08ad8412
    • Transparency log index: 145303624
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 87a60b60742bc62cc3de4031f07ce5abb9d759a17d110ae72fb858e1a6320922
MD5 a3d893c67984c51550f4ba757400105f
BLAKE2b-256 d0e24bb80f01fe5ffea057ee66f2d8b3c1c1467ffd04a8eb50de9692d88f85d0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 87a60b60742bc62cc3de4031f07ce5abb9d759a17d110ae72fb858e1a6320922
    • Transparency log index: 145303685
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b8bfbf528919fac178d24632f223e94700e5fb3f90899eaabfc8352c616fd7c
MD5 bc79af4256743b8c8f689054a7aff699
BLAKE2b-256 f760129faa32d722f52da95297b789360e9bad9497677c501d27222d318add37

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-macosx_11_0_arm64.whl
    • Subject digest: 6b8bfbf528919fac178d24632f223e94700e5fb3f90899eaabfc8352c616fd7c
    • Transparency log index: 145303616
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40bacfb23a0ea8f448ebb0f709afdc3f1cc6f9a68c5ad1ef5dc2f5599aeff59d
MD5 3f2ae2518e5c5f74cd1470fae79080ae
BLAKE2b-256 f0cb5b4443f437a25e14055f846086f628ef50a9423f125d03e5613a900871f5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-macosx_10_9_x86_64.whl
    • Subject digest: 40bacfb23a0ea8f448ebb0f709afdc3f1cc6f9a68c5ad1ef5dc2f5599aeff59d
    • Transparency log index: 145303694
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a7712d98388e5634e45ec18c2dbcbd6a36607cb884d7d2f3d26d949f8e19f09e
MD5 404f2bb71e93e032fafd89cfdf463760
BLAKE2b-256 fdb9a0799b340021759cfe60577892fdca8e0066a891ad397c66de1e22049959

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp39-cp39-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp39-cp39-macosx_10_9_universal2.whl
    • Subject digest: a7712d98388e5634e45ec18c2dbcbd6a36607cb884d7d2f3d26d949f8e19f09e
    • Transparency log index: 145303713
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 61689947d16408d5812efbec50188dc872159db0f73e58887b404c089fc5fcd6
MD5 fc4259434af6f35e1b4cd8fa76d21214
BLAKE2b-256 d7a4bf7d39571c15bde0300363ebf04f24e76b91c578c30cd061f5a2dde451a4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-win_amd64.whl
    • Subject digest: 61689947d16408d5812efbec50188dc872159db0f73e58887b404c089fc5fcd6
    • Transparency log index: 145303674
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-win32.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp38-cp38-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7fad51fe563d63c30577cb02d886937706f7c559832600f81a119cab5371afb7
MD5 f5a058e4ff9f5f70c609595043f83ea3
BLAKE2b-256 1fbae32b4378187c6e18e276096e8a51efd2e7473311c9bfd5c6f4bcd7a951dc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-win32.whl
    • Subject digest: 7fad51fe563d63c30577cb02d886937706f7c559832600f81a119cab5371afb7
    • Transparency log index: 145303615
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7ca5bea18fba46205f48341c702458dfd41114e3ca7d776a67462e9553c218dc
MD5 3cf9ca2bf2034451a3cceb0f711cee4f
BLAKE2b-256 424164f4497e5edb8af4bd79139f6c6277a6367d9c9ad69dcf237450d77a19ac

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-musllinux_1_2_x86_64.whl
    • Subject digest: 7ca5bea18fba46205f48341c702458dfd41114e3ca7d776a67462e9553c218dc
    • Transparency log index: 145303623
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 b2e66414d6640218ccf5b774600b906307448497894d3d31ee8fb5fbbf745cca
MD5 1d33ae70b8c70bb06cd98f6693f16bf0
BLAKE2b-256 7152fcc4d1c074a8cfbba0358d1805b68b263256575ab0d4f66283f739ccc452

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-musllinux_1_2_s390x.whl
    • Subject digest: b2e66414d6640218ccf5b774600b906307448497894d3d31ee8fb5fbbf745cca
    • Transparency log index: 145303596
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 92b722448c140c09e6edf7b4d11161713d5614e8e78995e67f8b8410a4dacdf0
MD5 d47968a3bfe3fc645c3159038b5f6cbb
BLAKE2b-256 ed2fd55aa5e82ef2bed99af7c91a48c6662f47844c9a7e5fb40fa9088d96c093

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-musllinux_1_2_ppc64le.whl
    • Subject digest: 92b722448c140c09e6edf7b4d11161713d5614e8e78995e67f8b8410a4dacdf0
    • Transparency log index: 145303677
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 bf3b6a6d70374aac7f62bb4273728b31f1129ac103e50ee4e0b54961321aab6e
MD5 861a5a6e786da9089771cb67cbada8e5
BLAKE2b-256 5794fd031f51bc35bf18d7066ccead632637ca068a8965e9321b8f90ddf22b0a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-musllinux_1_2_i686.whl
    • Subject digest: bf3b6a6d70374aac7f62bb4273728b31f1129ac103e50ee4e0b54961321aab6e
    • Transparency log index: 145303707
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 2a04c90cf1abab358aba089acb92347abea16b280f915cd6ec5a000e926f5ef6
MD5 1acb78c10986257ad27d766dac3e563e
BLAKE2b-256 ddc80bb4e66752c7af4bca4863853e136b8004272cb8bf4b381597bce655f78c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-musllinux_1_2_armv7l.whl
    • Subject digest: 2a04c90cf1abab358aba089acb92347abea16b280f915cd6ec5a000e926f5ef6
    • Transparency log index: 145303697
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9b8bb8c1f620bca897a62e6347ab15ec3068a33cd9a38f4acc90523cb62f9198
MD5 02e0b92ee7db7fd47235ae2217d1bc04
BLAKE2b-256 67d536a3e586b58b129ddc1891dad0b0e7cb7c258b423d9c84de62e66be1865a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-musllinux_1_2_aarch64.whl
    • Subject digest: 9b8bb8c1f620bca897a62e6347ab15ec3068a33cd9a38f4acc90523cb62f9198
    • Transparency log index: 145303672
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9090db5146f74441d6619778e1d6846ef1739338489b2504239c6ccefcd08985
MD5 55ca62c77243dd742277d164011fabfb
BLAKE2b-256 17df91f276d9d8f199d2e697ec9d7e04dfcd10fe9908d98e299a5b072eb69d1f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-manylinux_2_28_x86_64.whl
    • Subject digest: 9090db5146f74441d6619778e1d6846ef1739338489b2504239c6ccefcd08985
    • Transparency log index: 145303684
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 57a3f57d3959ece3d9b04f9922f639b6252cb1adc720a914636ec34a73543090
MD5 c0270264de54290a5d9573374de9e9aa
BLAKE2b-256 e06610c39e3f5e900c1a1d9d085d4a83483f1a33a47d9d3dc0924b55ef698096

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-manylinux_2_28_aarch64.whl
    • Subject digest: 57a3f57d3959ece3d9b04f9922f639b6252cb1adc720a914636ec34a73543090
    • Transparency log index: 145303695
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d4a5a3642fe410a4ab0ca1a760ddc3d9e3c3018dba69621de4a77f96bd52f3de
MD5 46487ef342b58a311276a4321d97c7b0
BLAKE2b-256 a73719803be29695f327a8bdfd5e5dc954d429d99a321900f52d73bb59518941

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: d4a5a3642fe410a4ab0ca1a760ddc3d9e3c3018dba69621de4a77f96bd52f3de
    • Transparency log index: 145303705
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0e474935b20516d572645f6de45befb74498cb8c58f4122f7151e712ae802856
MD5 efafa3ee33b083693857beefd2943ea6
BLAKE2b-256 5e3002bfec2f3948a31b07a790408e8bbb0bd4c7b253ee58c1120dbbccf6a4a6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 0e474935b20516d572645f6de45befb74498cb8c58f4122f7151e712ae802856
    • Transparency log index: 145303709
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8007a26389a739273e2cce8f5c956df3b401e2105c147ca60fe95bfa0a19bacf
MD5 abb5a7ee039ab154f25c3a6e9a159063
BLAKE2b-256 c345f9dd6bf85df228aaabd052e40656b68ad16247c0b96ebba828271fccea11

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 8007a26389a739273e2cce8f5c956df3b401e2105c147ca60fe95bfa0a19bacf
    • Transparency log index: 145303595
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e683794e035f5990898e3bf050f2b2d7eca475b6faf2d30e455b9f1e99fb7bd
MD5 4208b8b2d6222f04f8d3c2f68e347c7c
BLAKE2b-256 e735711fadcee038b8dec158ae68888cbaa8cf68ae7cf46825d66ae9071e8a94

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-macosx_11_0_arm64.whl
    • Subject digest: 3e683794e035f5990898e3bf050f2b2d7eca475b6faf2d30e455b9f1e99fb7bd
    • Transparency log index: 145303698
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7af807ae86c1a5db1f884790ee3d6f45244309fe7611d0cc0e511750cd01c0d2
MD5 be56edf52a244ae382c76fb60d46ebd3
BLAKE2b-256 e382d088a4bfae26b6ca690672e1428d8b9ec42ea8dcc6f11bed0bcd83d2b90d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-macosx_10_9_x86_64.whl
    • Subject digest: 7af807ae86c1a5db1f884790ee3d6f45244309fe7611d0cc0e511750cd01c0d2
    • Transparency log index: 145303715
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e1d5552c86950a93f0f05f3e3054a2f19fb8e05c8e6bf39b96d218ebfbad5d31
MD5 34c65aa31cc6972d89c60f7d53c19145
BLAKE2b-256 daa1746bcee9a04fb203938508d2ce11d8c45bba67e92182a64da02cf8c7bc69

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp38-cp38-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp38-cp38-macosx_10_9_universal2.whl
    • Subject digest: e1d5552c86950a93f0f05f3e3054a2f19fb8e05c8e6bf39b96d218ebfbad5d31
    • Transparency log index: 145303676
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d91f9a05dacd8269d43df922a3f5cd66d72a7afb0554ed9f74f9106ccab79d93
MD5 110c0ef1e8fafed845e461256aac347e
BLAKE2b-256 93872314c9e54692ec2271ff0d857452600f9c7c1f6331ee294cba7928d826cc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-win_amd64.whl
    • Subject digest: d91f9a05dacd8269d43df922a3f5cd66d72a7afb0554ed9f74f9106ccab79d93
    • Transparency log index: 145303591
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-win32.whl.

File metadata

  • Download URL: simsimd-5.9.9-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7cd985f29af09645b38815c0206c2359479543b505c82e7a55d61cf7494320a2
MD5 9c9bc53b79bcab0c58b4f9c46c454a22
BLAKE2b-256 73d06d1964f00fceda0bc1ba19cfdcf6db2e45532ec76dc6e549648093f243fc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-win32.whl
    • Subject digest: 7cd985f29af09645b38815c0206c2359479543b505c82e7a55d61cf7494320a2
    • Transparency log index: 145303611
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 69718477cd3f0fa322eaaba3d5feb1702979278aec55d1b5a80a8e099d74aae9
MD5 815f330c2c79739bbfd0b603be8fbc4d
BLAKE2b-256 ea6bdcab6ac987b217a5d6f82cba94a033ff1a45acdc080feae3201d66abeab1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-musllinux_1_2_x86_64.whl
    • Subject digest: 69718477cd3f0fa322eaaba3d5feb1702979278aec55d1b5a80a8e099d74aae9
    • Transparency log index: 145303640
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 259e17bead93908723e5877cd6fa1e2a82d2c7a2bff64eb7ae31d993d3f21083
MD5 0f528142cfe66e4ae0ec2184b2d424c6
BLAKE2b-256 d6d33929f7eb4abc6c64f7d5142116ce065eda595c02e82e754786ca124055ef

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-musllinux_1_2_s390x.whl
    • Subject digest: 259e17bead93908723e5877cd6fa1e2a82d2c7a2bff64eb7ae31d993d3f21083
    • Transparency log index: 145303588
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 f67d00a9497cd91ccdb7664ba8582ebe60a8552a668c600c505e633042c8de5f
MD5 33d155dbb9ac9d0077c9c694c502b5c1
BLAKE2b-256 ed8e2ab72b9634facf028d22def1cd4c1cfb62a2791d9c526b100321ed0fdb26

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-musllinux_1_2_ppc64le.whl
    • Subject digest: f67d00a9497cd91ccdb7664ba8582ebe60a8552a668c600c505e633042c8de5f
    • Transparency log index: 145303612
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ab3e300187cd07f48289758ecd5f6b543ded0567c55d98ba9e02de3d1317a6af
MD5 53d53a9b7108e1f1279f5e95f62dbf64
BLAKE2b-256 dd494be2c5cb9755c4cea99faf98eee7829a00ba418a662a00cfca0fe88d124c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-musllinux_1_2_i686.whl
    • Subject digest: ab3e300187cd07f48289758ecd5f6b543ded0567c55d98ba9e02de3d1317a6af
    • Transparency log index: 145303692
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 5a9e50670f2849fa0c446f05f2e3cd21847f1f731098522128ac545ffdeaddb0
MD5 76666cf0fd36972587a1e1b1d39f6222
BLAKE2b-256 1d640aa33d75ec362d6b000cc7ced2680e8a18264a3272a5a305aa39438fbae0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-musllinux_1_2_armv7l.whl
    • Subject digest: 5a9e50670f2849fa0c446f05f2e3cd21847f1f731098522128ac545ffdeaddb0
    • Transparency log index: 145303711
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3534b40cdfc32e9051b1b348ad9efaa0d727f74e7504a6f86edde8dc6e1fdedd
MD5 affa22a93b333efdfe5b3b93b540f913
BLAKE2b-256 adb06bd1a4d313b62f8c205f24bd4f1841385357434fa3d60d1a69dbc808a8e5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-musllinux_1_2_aarch64.whl
    • Subject digest: 3534b40cdfc32e9051b1b348ad9efaa0d727f74e7504a6f86edde8dc6e1fdedd
    • Transparency log index: 145303664
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4824f72543efc015e5d40df940705ac544c0903527afe5599aba073b509b0837
MD5 c7c6add1c8268b30fc7d8908fc05710c
BLAKE2b-256 ce62ee546ca4e12855d95bb228504f528841a9b31ed046116454d1b003b739d0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-manylinux_2_28_x86_64.whl
    • Subject digest: 4824f72543efc015e5d40df940705ac544c0903527afe5599aba073b509b0837
    • Transparency log index: 145303586
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 46541a83f4e85c4b0741ef5e20097649d202d23726a74bf44c23a698eead6338
MD5 9eae23e3cec43917533fe1be9df4b53f
BLAKE2b-256 471903a486b1086a10c814a9ed32503cb02892e9af70f66bd7c38757858a9af3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-manylinux_2_28_aarch64.whl
    • Subject digest: 46541a83f4e85c4b0741ef5e20097649d202d23726a74bf44c23a698eead6338
    • Transparency log index: 145303690
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b84da054295098decdb49b5fb19b8275a56e71501279672674a9a7e9296c28c1
MD5 46922c98cfb7be4b00ddad80ac10407a
BLAKE2b-256 2c8f1be92c8c30439e39c9d8dde56cd53a6d103137da8ba2bd90ff8af95462e5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: b84da054295098decdb49b5fb19b8275a56e71501279672674a9a7e9296c28c1
    • Transparency log index: 145303597
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0976eb878b3c332893a90e9698f3c0a7ee9032f6b5a7d5ee20daa5fef7df27b8
MD5 5b039f9117741d5083390d67d628db44
BLAKE2b-256 acd80615cc5c2c0a97556af3a6d9eac899eb8c530f1015b6c3d6c7872c56f304

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 0976eb878b3c332893a90e9698f3c0a7ee9032f6b5a7d5ee20daa5fef7df27b8
    • Transparency log index: 145303630
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 042708b1e3f9935921f69c5de25be15a5a1364384d718b47e6ebcc30273f2b96
MD5 86fe1a1643fbe512e618b9dcc153813f
BLAKE2b-256 11772814900e66a334545e11283790506bd4dbc39be6997268cb35819d9c84ce

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 042708b1e3f9935921f69c5de25be15a5a1364384d718b47e6ebcc30273f2b96
    • Transparency log index: 145303691
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe99a5c16de2ca414f019c91febb2932c76b5b896931a66a318cc08c419cab7c
MD5 d69b986a5049a8b715d5133a8f684259
BLAKE2b-256 839f2c6da025af76e999ba7733a48543ded720ab930090b6acfe092e4da0fb91

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.9-cp37-cp37m-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.9-cp37-cp37m-macosx_10_9_x86_64.whl
    • Subject digest: fe99a5c16de2ca414f019c91febb2932c76b5b896931a66a318cc08c419cab7c
    • Transparency log index: 145303714
    • Transparency log integration time:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page