Skip to main content

Simple tool to change the INPUT and OUTPUT shape of ONNX.

Project description

sio4onnx

Simple tool to change the INPUT and OUTPUT shape of ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U sio4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sio4onnx -h

usage:
    sio4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -of OUTPUT_ONNX_FILE_PATH
    -i INPUT_NAMES
    -is INPUT_SHAPES [INPUT_SHAPES ...]
    -o OUTPUT_NAMES
    -os OUTPUT_SHAPES [OUTPUT_SHAPES ...]
    [-n]

optional arguments:
  -h, --help
        Show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        INPUT ONNX file path

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        OUTPUT ONNX file path

  -i INPUT_NAMES, --input_names INPUT_NAMES
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g.
        --input_names "input.A" \
        --input_names "input.B" \
        --input_names "input.C"

  -is INPUT_SHAPES [INPUT_SHAPES ...], --input_shapes INPUT_SHAPES [INPUT_SHAPES ...]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        --input_shapes 1 3 "H" "W" \
        --input_shapes "N" 3 "H" "W" \
        --input_shapes "-1" 3 480 640

  -o OUTPUT_NAMES, --output_names OUTPUT_NAMES
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_names "output.a" \
        --output_names "output.b" \
        --output_names "output.c"

  -os OUTPUT_SHAPES [OUTPUT_SHAPES ...], --output_shapes OUTPUT_SHAPES [OUTPUT_SHAPES ...]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_shapes 1 3 "H" "W" \
        --output_shapes "N", 3, "H", "W" \
        --output_shapes "-1" 3 480 640

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sio4onnx import io_change
>>> help(io_change)

Help on function io_change in module sio4onnx.onnx_input_output_variable_changer:

io_change(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    input_names: Union[List[str], NoneType] = [],
    input_shapes: Union[List[Union[int, str]], NoneType] = [],
    output_names: Union[List[str], NoneType] = [],
    output_shapes: Union[List[Union[int, str]], NoneType] = [],
    non_verbose: Union[bool, NoneType] = False,
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    input_names: Optional[List[str]]
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g. ['input.A', 'input.B', 'input.C']

    input_shapes: Optional[List[Union[int, str]]]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    output_names: Optional[List[str]]
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g. ['output.a', 'output.b', 'output.c']

    output_shapes: Optional[List[Union[int, str]]]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    io_changed_graph: onnx.ModelProto
        onnx ModelProto with modified INPUT and OUTPUT shapes.

4. CLI Execution

$ sio4onnx \
--input_onnx_file_path yolov3-10.onnx \
--output_onnx_file_path yolov3-10_upd.onnx \
--input_names "input_1" \
--input_names "image_shape" \
--input_shapes "batch" 3 "H" "W" \
--input_shapes "batch" 2 \
--output_names "yolonms_layer_1/ExpandDims_1:0" \
--output_names "yolonms_layer_1/ExpandDims_3:0" \
--output_names "yolonms_layer_1/concat_2:0" \
--output_shapes 1 "boxes" 4 \
--output_shapes 1 "classes" "boxes" \
--output_shapes "boxes" 3

5. In-script Execution

from sio4onnx import io_change

io_changed_graph = io_change(
    input_onnx_file_path="yolov3-10.onnx",
    output_onnx_file_path="yolov3-10_upd.onnx",
    input_names=[
        "input_1",
        "image_shape",
    ],
    input_shapes=[
        ["batch", 3, "H", "W"],
        ["batch", 2],
    ],
    output_names=[
        "yolonms_layer_1/ExpandDims_1:0",
        "yolonms_layer_1/ExpandDims_3:0",
        "yolonms_layer_1/concat_2:0",
    ],
    output_shapes=[
        [1, "boxes", 4],
        [1, "classes", "boxes"],
        ["boxes", 3],
    ],
)

6. Sample

Before

image

After

image

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sio4onnx-1.0.3.tar.gz (8.5 kB view details)

Uploaded Source

Built Distribution

sio4onnx-1.0.3-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file sio4onnx-1.0.3.tar.gz.

File metadata

  • Download URL: sio4onnx-1.0.3.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.21

File hashes

Hashes for sio4onnx-1.0.3.tar.gz
Algorithm Hash digest
SHA256 9037c76afa96c359eba8d04897dbe943a31e49806c25ab5b785cb0eba7427e05
MD5 30ca42fca954d69578f04fd95a82dd51
BLAKE2b-256 9ed78dca6ff4e74304d25314f439053f3d1192f5fd55572267004cc857116bc4

See more details on using hashes here.

File details

Details for the file sio4onnx-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: sio4onnx-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.21

File hashes

Hashes for sio4onnx-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d90744fb00c4e43b9e9411ab057e407c5b907f2a9cbae50638e6308c7713b75e
MD5 a322179f5ec03dfcf027370dd90ed482
BLAKE2b-256 dd9908cfcda4d87cca896dc079ef95586e09081248dea218456752762741ba1f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page