Skip to main content

Simple tool to change the INPUT and OUTPUT shape of ONNX.

Project description

sio4onnx

Simple tool to change the INPUT and OUTPUT shape of ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U sio4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sio4onnx -h

usage:
    sio4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -of OUTPUT_ONNX_FILE_PATH
    -i INPUT_NAMES
    -is INPUT_SHAPES [INPUT_SHAPES ...]
    -o OUTPUT_NAMES
    -os OUTPUT_SHAPES [OUTPUT_SHAPES ...]
    [-n]

optional arguments:
  -h, --help
        Show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        INPUT ONNX file path

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        OUTPUT ONNX file path

  -i INPUT_NAMES, --input_names INPUT_NAMES
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g.
        --input_names "input.A" \
        --input_names "input.B" \
        --input_names "input.C"

  -is INPUT_SHAPES [INPUT_SHAPES ...], --input_shapes INPUT_SHAPES [INPUT_SHAPES ...]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        --input_shapes 1 3 "H" "W" \
        --input_shapes "N" 3 "H" "W" \
        --input_shapes "-1" 3 480 640

  -o OUTPUT_NAMES, --output_names OUTPUT_NAMES
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_names "output.a" \
        --output_names "output.b" \
        --output_names "output.c"

  -os OUTPUT_SHAPES [OUTPUT_SHAPES ...], --output_shapes OUTPUT_SHAPES [OUTPUT_SHAPES ...]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_shapes 1 3 "H" "W" \
        --output_shapes "N", 3, "H", "W" \
        --output_shapes "-1" 3 480 640

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sio4onnx import io_change
>>> help(io_change)

Help on function io_change in module sio4onnx.onnx_input_output_variable_changer:

io_change(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    input_names: Union[List[str], NoneType] = [],
    input_shapes: Union[List[str], NoneType] = [],
    output_names: Union[List[str], NoneType] = [],
    output_shapes: Union[List[str], NoneType] = [],
    non_verbose: Union[bool, NoneType] = False,
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    input_names: Optional[List[str]]
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g. ['input.A', 'input.B', 'input.C']

    input_shapes: Optional[List[str]]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    output_names: Optional[List[str]]
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g. ['output.a', 'output.b', 'output.c']

    output_shapes: Optional[List[str]]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    io_changed_graph: onnx.ModelProto
        onnx ModelProto with modified INPUT and OUTPUT shapes.

4. CLI Execution

$ sio4onnx \
--input_onnx_file_path yolov3-10.onnx \
--output_onnx_file_path yolov3-10_upd.onnx \
--input_names "input_1" \
--input_names "image_shape" \
--input_shapes "batch" 3 "H" "W" \
--input_shapes "batch" 2 \
--output_names "yolonms_layer_1/ExpandDims_1:0" \
--output_names "yolonms_layer_1/ExpandDims_3:0" \
--output_names "yolonms_layer_1/concat_2:0" \
--output_shapes 1 "boxes" 4 \
--output_shapes 1 "classes" "boxes" \
--output_shapes "boxes" 3

5. In-script Execution

from sio4onnx import shape_inference

estimated_graph = io_change(
    input_onnx_file_path="yolov3-10.onnx",
    output_onnx_file_path="yolov3-10_upd.onnx",
    input_names=[
        "input_1",
        "image_shape",
    ],
    input_shapes=[
        ["batch", 3, "H", "W"],
        ["batch", 2],
    ],
    output_names=[
        "yolonms_layer_1/ExpandDims_1:0",
        "yolonms_layer_1/ExpandDims_3:0",
        "yolonms_layer_1/concat_2:0",
    ],
    output_shapes=[
        [1, "boxes", 4],
        [1, "classes", "boxes"],
        ["boxes", 3],
    ],
)

6. Sample

Before

image

After

image

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sio4onnx-1.0.0.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

sio4onnx-1.0.0-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file sio4onnx-1.0.0.tar.gz.

File metadata

  • Download URL: sio4onnx-1.0.0.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for sio4onnx-1.0.0.tar.gz
Algorithm Hash digest
SHA256 85426cd76a32c20cbd6034a8bfb02b4ee842ef2011fcfcbb7c598f8fb766bf56
MD5 213e112205eeade71aad9ab3fdf01bb1
BLAKE2b-256 5e5e30d6e8fbcf26dadf05f5eff7f994cf178ae6a22c4d5b07ccfd891544bdae

See more details on using hashes here.

File details

Details for the file sio4onnx-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: sio4onnx-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 6.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for sio4onnx-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 51a06c7a9be54a96f8c472bf0da03bf496919befc29933e7f5f89d2c72b2be09
MD5 4f85f125179cb4ee508428be750e3b87
BLAKE2b-256 f6f70d4268f36168814494db8ab884ff6dadd9ecdb1ce16cc82c65d343fb55ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page