Skip to main content

Simple tool to change the INPUT and OUTPUT shape of ONNX.

Project description

sio4onnx

Simple tool to change the INPUT and OUTPUT shape of ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U sio4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sio4onnx -h

usage:
    sio4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -of OUTPUT_ONNX_FILE_PATH
    -i INPUT_NAMES
    -is INPUT_SHAPES [INPUT_SHAPES ...]
    -o OUTPUT_NAMES
    -os OUTPUT_SHAPES [OUTPUT_SHAPES ...]
    [-n]

optional arguments:
  -h, --help
        Show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        INPUT ONNX file path

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        OUTPUT ONNX file path

  -i INPUT_NAMES, --input_names INPUT_NAMES
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g.
        --input_names "input.A" \
        --input_names "input.B" \
        --input_names "input.C"

  -is INPUT_SHAPES [INPUT_SHAPES ...], --input_shapes INPUT_SHAPES [INPUT_SHAPES ...]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        --input_shapes 1 3 "H" "W" \
        --input_shapes "N" 3 "H" "W" \
        --input_shapes "-1" 3 480 640

  -o OUTPUT_NAMES, --output_names OUTPUT_NAMES
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_names "output.a" \
        --output_names "output.b" \
        --output_names "output.c"

  -os OUTPUT_SHAPES [OUTPUT_SHAPES ...], --output_shapes OUTPUT_SHAPES [OUTPUT_SHAPES ...]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_shapes 1 3 "H" "W" \
        --output_shapes "N", 3, "H", "W" \
        --output_shapes "-1" 3 480 640

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sio4onnx import io_change
>>> help(io_change)

Help on function io_change in module sio4onnx.onnx_input_output_variable_changer:

io_change(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    input_names: Union[List[str], NoneType] = [],
    input_shapes: Union[List[str], NoneType] = [],
    output_names: Union[List[str], NoneType] = [],
    output_shapes: Union[List[str], NoneType] = [],
    non_verbose: Union[bool, NoneType] = False,
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    input_names: Optional[List[str]]
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g. ['input.A', 'input.B', 'input.C']

    input_shapes: Optional[List[str]]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    output_names: Optional[List[str]]
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g. ['output.a', 'output.b', 'output.c']

    output_shapes: Optional[List[str]]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    io_changed_graph: onnx.ModelProto
        onnx ModelProto with modified INPUT and OUTPUT shapes.

4. CLI Execution

$ sio4onnx \
--input_onnx_file_path yolov3-10.onnx \
--output_onnx_file_path yolov3-10_upd.onnx \
--input_names "input_1" \
--input_names "image_shape" \
--input_shapes "batch" 3 "H" "W" \
--input_shapes "batch" 2 \
--output_names "yolonms_layer_1/ExpandDims_1:0" \
--output_names "yolonms_layer_1/ExpandDims_3:0" \
--output_names "yolonms_layer_1/concat_2:0" \
--output_shapes 1 "boxes" 4 \
--output_shapes 1 "classes" "boxes" \
--output_shapes "boxes" 3

5. In-script Execution

from sio4onnx import io_change

estimated_graph = io_change(
    input_onnx_file_path="yolov3-10.onnx",
    output_onnx_file_path="yolov3-10_upd.onnx",
    input_names=[
        "input_1",
        "image_shape",
    ],
    input_shapes=[
        ["batch", 3, "H", "W"],
        ["batch", 2],
    ],
    output_names=[
        "yolonms_layer_1/ExpandDims_1:0",
        "yolonms_layer_1/ExpandDims_3:0",
        "yolonms_layer_1/concat_2:0",
    ],
    output_shapes=[
        [1, "boxes", 4],
        [1, "classes", "boxes"],
        ["boxes", 3],
    ],
)

6. Sample

Before

image

After

image

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sio4onnx-1.0.1.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

sio4onnx-1.0.1-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file sio4onnx-1.0.1.tar.gz.

File metadata

  • Download URL: sio4onnx-1.0.1.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for sio4onnx-1.0.1.tar.gz
Algorithm Hash digest
SHA256 db32834d4cbeda422b58ddf5ed0d5247a54e43d86a276f7805ed6c17b2e72637
MD5 6e6d957e5d4635b7ecb7f9470a498be7
BLAKE2b-256 fbb8526a3c829e64ac9ddd9f15268efad92bc81aa443a926171e31091733e22f

See more details on using hashes here.

File details

Details for the file sio4onnx-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: sio4onnx-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for sio4onnx-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 febd4943c448d0c7feb7bddc23bc92897044e3f7bf98f74190b0cc49e0d27c13
MD5 0d35df97b9dff44ab495e8f110be1c31
BLAKE2b-256 ed5f6dd7fbd1705966f276d1478a8f3dc3753896109f06a2460c42339a62c799

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page