Skip to main content

Simple tool to change the INPUT and OUTPUT shape of ONNX.

Project description

sio4onnx

Simple tool to change the INPUT and OUTPUT shape of ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U sio4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sio4onnx -h

usage:
    sio4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -of OUTPUT_ONNX_FILE_PATH
    -i INPUT_NAMES
    -is INPUT_SHAPES [INPUT_SHAPES ...]
    -o OUTPUT_NAMES
    -os OUTPUT_SHAPES [OUTPUT_SHAPES ...]
    [-n]

optional arguments:
  -h, --help
        Show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        INPUT ONNX file path

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        OUTPUT ONNX file path

  -i INPUT_NAMES, --input_names INPUT_NAMES
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g.
        --input_names "input.A" \
        --input_names "input.B" \
        --input_names "input.C"

  -is INPUT_SHAPES [INPUT_SHAPES ...], --input_shapes INPUT_SHAPES [INPUT_SHAPES ...]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        --input_shapes 1 3 "H" "W" \
        --input_shapes "N" 3 "H" "W" \
        --input_shapes "-1" 3 480 640

  -o OUTPUT_NAMES, --output_names OUTPUT_NAMES
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_names "output.a" \
        --output_names "output.b" \
        --output_names "output.c"

  -os OUTPUT_SHAPES [OUTPUT_SHAPES ...], --output_shapes OUTPUT_SHAPES [OUTPUT_SHAPES ...]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        --output_shapes 1 3 "H" "W" \
        --output_shapes "N", 3, "H", "W" \
        --output_shapes "-1" 3 480 640

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sio4onnx import io_change
>>> help(io_change)

Help on function io_change in module sio4onnx.onnx_input_output_variable_changer:

io_change(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    input_names: Union[List[str], NoneType] = [],
    input_shapes: Union[List[Union[int, str]], NoneType] = [],
    output_names: Union[List[str], NoneType] = [],
    output_shapes: Union[List[Union[int, str]], NoneType] = [],
    non_verbose: Union[bool, NoneType] = False,
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    input_names: Optional[List[str]]
        List of input OP names. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_shapes.
        e.g. ['input.A', 'input.B', 'input.C']

    input_shapes: Optional[List[Union[int, str]]]
        List of input OP shapes. All input OPs of the model must be specified.
        The order is unspecified, but must match the order specified for input_names.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    output_names: Optional[List[str]]
        List of output OP names. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g. ['output.a', 'output.b', 'output.c']

    output_shapes: Optional[List[Union[int, str]]]
        List of input OP shapes. All output OPs of the model must be specified.
        The order is unspecified, but must match the order specified for output_shapes.
        e.g.
        [
            [1, 3, 'H', 'W'],
            ['N', 3, 'H', 'W'],
            ['-1', 3, 480, 640],
        ]

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    io_changed_graph: onnx.ModelProto
        onnx ModelProto with modified INPUT and OUTPUT shapes.

4. CLI Execution

$ sio4onnx \
--input_onnx_file_path yolov3-10.onnx \
--output_onnx_file_path yolov3-10_upd.onnx \
--input_names "input_1" \
--input_names "image_shape" \
--input_shapes "batch" 3 "H" "W" \
--input_shapes "batch" 2 \
--output_names "yolonms_layer_1/ExpandDims_1:0" \
--output_names "yolonms_layer_1/ExpandDims_3:0" \
--output_names "yolonms_layer_1/concat_2:0" \
--output_shapes 1 "boxes" 4 \
--output_shapes 1 "classes" "boxes" \
--output_shapes "boxes" 3

5. In-script Execution

from sio4onnx import io_change

estimated_graph = io_change(
    input_onnx_file_path="yolov3-10.onnx",
    output_onnx_file_path="yolov3-10_upd.onnx",
    input_names=[
        "input_1",
        "image_shape",
    ],
    input_shapes=[
        ["batch", 3, "H", "W"],
        ["batch", 2],
    ],
    output_names=[
        "yolonms_layer_1/ExpandDims_1:0",
        "yolonms_layer_1/ExpandDims_3:0",
        "yolonms_layer_1/concat_2:0",
    ],
    output_shapes=[
        [1, "boxes", 4],
        [1, "classes", "boxes"],
        ["boxes", 3],
    ],
)

6. Sample

Before

image

After

image

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sio4onnx-1.0.2.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

sio4onnx-1.0.2-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file sio4onnx-1.0.2.tar.gz.

File metadata

  • Download URL: sio4onnx-1.0.2.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for sio4onnx-1.0.2.tar.gz
Algorithm Hash digest
SHA256 927a584c679a73080f481951d67df01924eb14980d28542542cab95b2c9a1f4f
MD5 a8950718737834c11c93a389fc4cd7aa
BLAKE2b-256 103a9654d281161ea316879cfca320ac6897f1694ea2f6ac9a945aaaac86eaa7

See more details on using hashes here.

File details

Details for the file sio4onnx-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: sio4onnx-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for sio4onnx-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7e5b5bc7097740b2f988de745ed2c5a0c69c91cfdc3248d7f7b5d29df9acf46f
MD5 acf2b4059a6c75b2a4a2e9c314723928
BLAKE2b-256 7e1661b40a5445ef890262227bc1dd7c61073049c02595cb8e423765a7979962

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page