Skip to main content

Import data from the 'Sistema de Registro Nacional de Emissões' (SIRENE) from MCTI

Project description

CO2e Emission Coefficients for the Brazilian Economy

The Sirene package is crafted to provide CO2e emissions data for various Brazilian economic activities. This package facilitates the estimation of direct emission coefficients for each sector, representing the volume of emissions in Gg relative to the production volume (expressed in aggregate value in millions of reais).

Beyond direct coefficients, it also computes the indirect emission coefficients. The estimation methodology is adopted from Luis Masa's paper, titled "AN ESTIMATION OF THE CARBON FOOTPRINT IN SPANISH CREDIT INSTITUTIONS’ BUSINESS LENDING PORTFOLIO".

The Sirene package contains a series of variables that detail emissions from various sectors and other related data. The available variables are:

  • atividade_tru68_ibge: Refers to activity (i) of TRU68.
  • production_values_mi_brl: Represents the total production of activity (i) for the year (t) in millions of BRL.
  • ano: Reference year (complete data available only between 2012 and 2020).
  • energia_Gg_CO2e_GWP_SAR: Emissions of CO2e from the energy sector in Gg, calculated using the CO2e_GWP_SAR methodology.
  • residuo_Gg_CO2e_GWP_SAR: Emissions of CO2e from the waste sector in Gg.
  • agropecuaria_Gg_CO2e_GWP_SAR: Emissions of CO2e from the agricultural sector in Gg.
  • ippu_Gg_CO2e_GWP_SAR: Emissions of CO2e from the IPPU sector in Gg.
  • lulucf_Gg_CO2e_GWP_SAR: Emissions of CO2e from the LULUCF sector in Gg.
  • total_Gg_CO2e_GWP_SAR: Total CO2e emissions in Gg.
  • active_loan_portfolio_mi_brl: Value of loans by sector in millions of BRL.
  • q_direct: Coefficient of direct emissions.
  • q_total: Coefficient of total emissions.
  • q_indirect: Coefficient of indirect emissions.

Instalation

!pip install sirene
from sirene import srn as srn
coef67_t = srn.coef('2019', lulucf = False).result

Reading the Raw Emission Data (MCTI/SIRENE)

Emission data is available for 3 different gases ('CO2', 'CH4', 'N2O'). If preferred, it is also possible to consult equivalent emissions ('CO2e_GWP_SAR', 'CO2e_GWP_AR5', 'CO2e_GTP_AR5'). The available sectors are: 'agropecuaria', 'energia', 'ippu', 'lulucf', 'residuos' and 'total-brasil-1'.

res_m = srn.read('residuos','CO2')

Main Function: coef()

The coef() function is the core of this package and returns all of the above-listed variables. The arguments it accepts are:

  • ano: String representing the desired year, with values between 2012 and 2020.
  • household: Boolean (True or False) determining whether households should be considered when calculating emissions and coefficients.
  • emission: Defines which type of emission will be considered when constructing the emission coefficients. Available options are: 'total', 'total_no_lulucf', 'lulucf', 'ippu', 'residuo', and 'agropecuaria'.

Usage Example:

result_t = srn.coef('2019', emission='lulucf', household=False).result

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sirene-0.0.19.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

sirene-0.0.19-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file sirene-0.0.19.tar.gz.

File metadata

  • Download URL: sirene-0.0.19.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for sirene-0.0.19.tar.gz
Algorithm Hash digest
SHA256 8a30dbb45026ea5f437a89ca3466107da4a39170cba54f5810a3f9b2f1884dd0
MD5 e9a7609f60fdc79201c9235d6ac5ba85
BLAKE2b-256 8d110b94fe96afbed78903cb2b0329a2602aab674e94ba2b42b7fb5f1bdc4bd4

See more details on using hashes here.

File details

Details for the file sirene-0.0.19-py3-none-any.whl.

File metadata

  • Download URL: sirene-0.0.19-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for sirene-0.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 4501087ad7b41c91d64648fa484e67c045c909636f36dfe44db1d433379afd28
MD5 c628092674af37df2d040ba65e12c8b0
BLAKE2b-256 b21d7d65ac4e83dda9a0f4de048af4d48a980d81f065fdd93b00cbedb750eacb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page