Python package to make it easy to develop beautiful, performant streamlit-in-snowflake apps
Project description
sis-extras
Overview
The sis-extras
package provides a set of Python utilities designed to help you develop beautiful, performant streamlit-in-snowflake apps.
Currently, this package includes modules for managing database connections (connection.py
) and creating interactive data tiles (formatting.py
).
Installation
To install sis-extras
, you can use pip:
pip install sis-extras
Modules
connection.py
This module handles connections to Snowflake databases, providing functionality to manage sessions and execute SQL queries directly, returning results in a Pandas DataFrame format.
Key Functions:
SnowparkConnection
: Manages Snowflake database connections.get_data_frame_from_raw_sql
: Executes a SQL query and returns the results as a Pandas DataFrame.get_pandas_df
: Converts a Snowpark DataFrame to a Pandas DataFrame.join_cached
: Provides a cached mechanism for joining two Snowpark DataFrames.
formatting.py
This module aids in the visualization of data using Streamlit, Altair, and Plotly, focusing on creating interactive tiles that can display data, charts, and SQL queries.
Key Functions:
tile
: Creates a tile in Streamlit that can display a chart, data preview, SQL query, and a description.tile_ctx
: A context manager version oftile
for more flexible content management within a tile.altair_time_series
: Generates a time series chart using Altair, designed to handle specific formatting and tooltip requirements.
Usage Examples
Using SnowparkConnection
from sis_extras.connection import get_table, get_data_frame_from_raw_sql, get_pandas_df
# Use Snowpark API
table = get_table("your_table").limit(10)
table_pd = get_pandas_df(table)
st.write(table_pd)
# Use SQL
table_pd = get_data_frame_from_raw_sql("SELECT * FROM your_table")
st.write(table_pd)
Creating a Data Tile
from sis_extras.formatting import tile
import pandas as pd
import altair as alt
# Sample DataFrame
data = pd.DataFrame({
'x': range(10),
'y': range(10)
})
# Sample Chart
chart = alt.Chart(data).mark_line().encode(
x='x',
y='y'
)
# Create a tile with data and chart
tile(data, "Sample Tile", chart=chart, sql="SELECT x, y FROM your_table")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sis_extras-0.1.3.tar.gz
.
File metadata
- Download URL: sis_extras-0.1.3.tar.gz
- Upload date:
- Size: 7.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: pdm/2.15.3 CPython/3.10.12 Linux/6.5.0-1021-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7e1892ab5eef36e38880dc9b636597dce83162df4d51f3f7f509a7e792e8a73 |
|
MD5 | 62948d471377221489382454b7934e50 |
|
BLAKE2b-256 | cafe22dbfb8813c76412f7a3db2d2c31b5d547c253c82ba08e6870149483d5c4 |
File details
Details for the file sis_extras-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: sis_extras-0.1.3-py3-none-any.whl
- Upload date:
- Size: 7.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: pdm/2.15.3 CPython/3.10.12 Linux/6.5.0-1021-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f331b325ed9d7fff1449817a89351018c037aee7975893e190f675872908c22 |
|
MD5 | 90296d2720744f0f758064205314a6b8 |
|
BLAKE2b-256 | 448fe6237bae566eb040e5045a745f098ed1a14be40d86f41fc065860339a5dd |