Skip to main content

SemI-SUpervised generative Autoencoder for single cell data

Project description

SISUA_design

Semi-supervised Single-cell modeling:

Reference:

  • Trung Ngo Trong, Roger Kramer, Juha Mehtonen, Gerardo González, Ville Hautamäki, Merja Heinäniemi. “SISUA: SemI-SUpervised Generative Autoencoder for Single Cell Data”, ICML Workshop on Computational Biology, 2019. [pdf]

Installation

You only need Python 3.6, the stable version of SISUA installed via pip:

pip install sisua

Install the nightly version on github:

pip install git+https://github.com/trungnt13/sisua@master

For developers, we create a conda environment for SISUA contribution sisua_env

conda env create -f=sisua_env.yml

Getting started

  1. The basics:
  2. Single-cell analysis:
    • Latent space

    • Imputation of genes expression

    • Prediction of protein markers

  3. Advanced technical topics:
    • Probabilistic embedding

    • Hierarchical modeling (coming soon)

    • Causal analysis (coming soon)

    • Cross datasets analysis (coming soon)

  4. Benchmarks:
  5. Further development:

Toolkits

We provide binary toolkits for fast and efficient analyzing single-cell datasets:

  • sisua-train: train single-cell modeling algorithms, support training multiple systems in parallel.

  • sisua-analyze: evaluate, compare, and interpret trained model.

  • sisua-embed: probabilistic embedding for semi-supervised training.

  • sisua-data: coming soon

Some important arguments:

-model

name of function declared in models

  • scvi: single-cell Variational Inference model

  • dca: Deep Count Autoencoder

  • vae: single-cell Variational Autoencoder

  • movae: SISUA

-ds

name of dataset declared in data.

Description of all predefined datasets is in docs.

Some good datasets for practicing:

  • pbmc8k_ly

  • cortex

  • pbmcecc_ly

  • pbmcscvi

  • pbmcscvae

Configuration

By default, the data will be saved at your home folder at ~/bio_data, and the experiments’ outputs will be stored at ~/bio_log

You can customize these two paths using the environment variables:

  • For storing downloaded and preprocessed data: SISUA_DATA

  • For the experiments: SISUA_EXP

For example:

import os
os.environ['SISUA_DATA'] = '/tmp/bio_data'
os.environ['SISUA_EXP'] = '/tmp/bio_log'

from sisua.data import EXP_DIR, DATA_DIR

print(DATA_DIR) # /tmp/bio_data
print(EXP_DIR)  # /tmp/bio_log

or you could set the variables in advance:

export SISUA_DATA=/tmp/bio_data
export SISUA_EXP=/tmp/bio_log
python sisua/train.py
# or using the provided toolkit: sisua-train

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sisua-0.4.4.tar.gz (114.9 kB view details)

Uploaded Source

Built Distribution

sisua-0.4.4-py3.6.egg (342.3 kB view details)

Uploaded Source

File details

Details for the file sisua-0.4.4.tar.gz.

File metadata

  • Download URL: sisua-0.4.4.tar.gz
  • Upload date:
  • Size: 114.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.7

File hashes

Hashes for sisua-0.4.4.tar.gz
Algorithm Hash digest
SHA256 500eeda3795a439fc7c8e31ba4654dd6b5b480e3bbb3c76b516ce35f9814c446
MD5 66b79233f9f3a22c96022f8d0023e12c
BLAKE2b-256 1b590a51a8e3811892819cfc4f90509f0c32e8f8bf14462699995a5616d4f254

See more details on using hashes here.

File details

Details for the file sisua-0.4.4-py3.6.egg.

File metadata

  • Download URL: sisua-0.4.4-py3.6.egg
  • Upload date:
  • Size: 342.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.7

File hashes

Hashes for sisua-0.4.4-py3.6.egg
Algorithm Hash digest
SHA256 812be2c55077d40aea9e254377f0a7e47d75d3236f4e1a1ae7cb3f1e020b4d4c
MD5 104408251f88243e75ff728e465c3c4b
BLAKE2b-256 887d49e476fac4d658b2c328caf6237fa78e869c63c8adbf9555a349e37c0fb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page