Deep learning Keras models lifecycle management backup/restore nano framework
Project description
DL backup/restore nano framework
Makes it easy to start/stop/resume deep learning models training.
Current version supports only for Keras >= 2.2 models. You're welcome to contribute.
Usage
pip3 install sizif
Local filesystem Keras checkpoints backup:
from sizif.keras import KerasModelWrapper
from sizif.storage import FileCheckpointsMonitor
# your compiled Keras Model instance
model = build_model()
# Snapshots monitor
# Different model architectures should have different version parameter
# other parameters similar to Keras ModelCheckpoint
cpm = FileCheckpointsMonitor(version=1,
file_template='weights.{epoch:03d}-vl{val_loss:.3f}.hdf5',
folder='./checkpoints',
rotate_number=5,
monitor='val_acc',
verbose=1,
save_best_only=False,
save_weights_only=True,
mode='auto',
period=1)
# Keras wrapper, proxies all calls to the model
# except fit and fit_generator — which are surrounded
# by automated model state backup/recovery
km = KerasModelWrapper(model, cpm)
# all method parameters ar proxied to Keras as is except callbacks
km.fit_generator(training_set_generator,
epochs=25,
validation_data=test_set_generator,
callbacks=[tboard])
See sources for detailed docstrings
TODO:
- FTP/S3/SFTP/Dropbox uploading monitors
- Tensorflow/Pytorch models support
Tests
python3 -m unittest
Dependencies
- numpy ~> 1.15
- Keras ~> 2.2
License
This project is released under the MIT license.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sizif-0.0.2.tar.gz
(6.6 kB
view hashes)
Built Distribution
sizif-0.0.2-py3-none-any.whl
(8.2 kB
view hashes)