Skip to main content

A set of Python modules to implement the Bayesian Evidential Learning (BEL) framework

Project description

Travis Doc Black PythonVersion PyPi DOI Downloads

https://raw.githubusercontent.com/robinthibaut/skbel/master/docs/img/illu-01.png

skbel is a Python module for implementing the Bayesian Evidential Learning framework built on top of scikit-learn and is distributed under the 3-Clause BSD license.

For more information, read the documentation and run the example notebook.

Installation

Dependencies

skbel requires:

  • Python (>= 3.7)

  • Scikit-Learn (>= 0.24.1)

  • NumPy (>= 1.14.6)

  • SciPy (>= 1.1.0)

  • joblib (>= 0.11)


Skbel plotting capabilities require Matplotlib (>= 2.2.2).

User installation

The easiest way to install skbel is using pip

pip install skbel

Development

We welcome new contributors of all experience levels.

Source code

You can check the latest sources with the command:

git clone https://github.com/robinthibaut/skbel.git

Contributing

Contributors and feedback from users are welcome. Don’t hesitate to submit an issue or a PR, or request a new feature.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):

pytest skbel

Help and Support

Documentation

Communication

How to cite

Thibaut, Robin, & Maximilian Ramgraber. (2021). SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn (v2.0.0). Zenodo. https://doi.org/10.5281/zenodo.6205242

BibTeX:

@software{thibaut_skbel_2021,
author       = {Thibaut, Robin and Maximilian Ramgraber},
title        = {{SKBEL} - Bayesian Evidential Learning framework built on top of scikit-learn},
month        = {9},
year         = 2021,
publisher    = {Zenodo},
version      = {v2.0.0},
doi          = {10.5281/zenodo.6205242},
url          = {https://doi.org/10.5281/zenodo.6205242},
}

Notebooks and tutorials

Nolwenn Lesparre, Nicolas Compaire, Thomas Hermans and Robin Thibaut. (2022). 4D Temperature Monitoring with BEL. [Dataset]. Kaggle. doi: 10.34740/kaggle/ds/2275519. url: https://doi.org/10.34740/kaggle/ds/2275519

Thibaut, Robin (2021). WHPA Prediction. [Dataset]. Kaggle. doi:10.34740/kaggle/dsv/2648718. url: https://www.kaggle.com/dsv/2648718

Peer-reviewed publications using SKBEL

Thibaut, Robin, Nicolas Compaire, Nolwenn Lesparre, Maximilian Ramgraber, Eric Laloy, and Thomas Hermans (Nov. 2022). “Comparing Well and Geophysical Data for Temperature Monitoring Within a Bayesian Experimental Design Framework”. In: Water Resources Research 58 (11). issn: 0043-1397. doi: 10.1029/2022WR033045. url: https://onlinelibrary.wiley.com/doi/10.1029/2022WR033045.

Thibaut, Robin, Eric Laloy, and Thomas Hermans (Dec. 2021). “A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area”. In: Journal of Hydrology 603, p. 126903. issn: 00221694. doi: 10.1016/j.jhydrol.2021.126903. url: https://linkinghub.elsevier.com/retrieve/pii/S0022169421009537.

Research project

Logs and results of the research project are available on the project page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skbel-2.1.14.tar.gz (38.7 MB view details)

Uploaded Source

Built Distribution

skbel-2.1.14-py3-none-any.whl (13.5 MB view details)

Uploaded Python 3

File details

Details for the file skbel-2.1.14.tar.gz.

File metadata

  • Download URL: skbel-2.1.14.tar.gz
  • Upload date:
  • Size: 38.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for skbel-2.1.14.tar.gz
Algorithm Hash digest
SHA256 e0693d793dd1ce8ce98e519056791c75369561d8319e8a829dcc2b10d34c981e
MD5 2ef628f0d8eedd266ecbadf49913cf9d
BLAKE2b-256 4219ab96997bb63902a775f0f27c1a19ab13d2aaee41d479b7b38b88f03e4d71

See more details on using hashes here.

File details

Details for the file skbel-2.1.14-py3-none-any.whl.

File metadata

  • Download URL: skbel-2.1.14-py3-none-any.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for skbel-2.1.14-py3-none-any.whl
Algorithm Hash digest
SHA256 fb34c3ed5cc0b92955ba6ae6f49ae5e0e0172f7090e4c2cafbf3c1abf312e147
MD5 5e3fab712d9503a773b57b6f281927ef
BLAKE2b-256 03c12bcd298dde038b360aaa5ff7d036423962dc1f176efb883ef0c9111b0132

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page