A set of Python modules to implement the Bayesian Evidential Learning (BEL) framework
Project description
skbel is a Python module for implementing the Bayesian Evidential Learning framework built on top of scikit-learn and is distributed under the 3-Clause BSD license.
For more information, read the documentation and run the example notebook.
Installation
Dependencies
skbel requires:
Python (>= 3.7)
Scikit-Learn (>= 0.24.1)
NumPy (>= 1.14.6)
SciPy (>= 1.1.0)
joblib (>= 0.11)
Skbel plotting capabilities require Matplotlib (>= 2.2.2).
User installation
The easiest way to install skbel is using pip
pip install skbel
Development
We welcome new contributors of all experience levels.
Important links
Official source code repo: https://github.com/robinthibaut/skbel/
Download releases: https://pypi.org/project/skbel/
Issue tracker: https://github.com/robinthibaut/skbel/issues
Source code
You can check the latest sources with the command:
git clone https://github.com/robinthibaut/skbel.git
Contributing
Contributors and feedback from users are welcome. Don’t hesitate to submit an issue or a PR, or request a new feature.
Testing
After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 5.0.1 installed):
pytest skbel
Help and Support
Documentation
HTML documentation (latest release): https://skbel.readthedocs.io/en/latest/
Communication
Github Discussions: https://github.com/robinthibaut/skbel/discussions
How to cite
Thibaut, Robin, & Maximilian Ramgraber. (2021). SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn (v2.0.0). Zenodo. https://doi.org/10.5281/zenodo.6205242
BibTeX:
@software{thibaut_skbel_2021, author = {Thibaut, Robin and Maximilian Ramgraber}, title = {{SKBEL} - Bayesian Evidential Learning framework built on top of scikit-learn}, month = {9}, year = 2021, publisher = {Zenodo}, version = {v2.0.0}, doi = {10.5281/zenodo.6205242}, url = {https://doi.org/10.5281/zenodo.6205242}, }
Notebooks and tutorials
Nolwenn Lesparre, Nicolas Compaire, Thomas Hermans and Robin Thibaut. (2022). 4D Temperature Monitoring with BEL. [Dataset]. Kaggle. doi: 10.34740/kaggle/ds/2275519. url: https://doi.org/10.34740/kaggle/ds/2275519
Thibaut, Robin (2021). WHPA Prediction. [Dataset]. Kaggle. doi:10.34740/kaggle/dsv/2648718. url: https://www.kaggle.com/dsv/2648718
Peer-reviewed publications using SKBEL
Thibaut, Robin, Nicolas Compaire, Nolwenn Lesparre, Maximilian Ramgraber, Eric Laloy, and Thomas Hermans (Nov. 2022). “Comparing Well and Geophysical Data for Temperature Monitoring Within a Bayesian Experimental Design Framework”. In: Water Resources Research 58 (11). issn: 0043-1397. doi: 10.1029/2022WR033045. url: https://onlinelibrary.wiley.com/doi/10.1029/2022WR033045.
Thibaut, Robin, Eric Laloy, and Thomas Hermans (Dec. 2021). “A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area”. In: Journal of Hydrology 603, p. 126903. issn: 00221694. doi: 10.1016/j.jhydrol.2021.126903. url: https://linkinghub.elsevier.com/retrieve/pii/S0022169421009537.
Research project
Logs and results of the research project are available on the project page.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file skbel-2.1.14.tar.gz
.
File metadata
- Download URL: skbel-2.1.14.tar.gz
- Upload date:
- Size: 38.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0693d793dd1ce8ce98e519056791c75369561d8319e8a829dcc2b10d34c981e |
|
MD5 | 2ef628f0d8eedd266ecbadf49913cf9d |
|
BLAKE2b-256 | 4219ab96997bb63902a775f0f27c1a19ab13d2aaee41d479b7b38b88f03e4d71 |
File details
Details for the file skbel-2.1.14-py3-none-any.whl
.
File metadata
- Download URL: skbel-2.1.14-py3-none-any.whl
- Upload date:
- Size: 13.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb34c3ed5cc0b92955ba6ae6f49ae5e0e0172f7090e4c2cafbf3c1abf312e147 |
|
MD5 | 5e3fab712d9503a773b57b6f281927ef |
|
BLAKE2b-256 | 03c12bcd298dde038b360aaa5ff7d036423962dc1f176efb883ef0c9111b0132 |