Skip to main content

Skforecast is a Python library for time series forecasting using machine learning models. It works with any regressor compatible with the scikit-learn API, including popular options like LightGBM, XGBoost, CatBoost, Keras, and many others.

Project description

Package Python PyPI Downloads Maintenance Project Status: Active
Meta License DOI
Testing Build status codecov
Donation paypal buymeacoffee GitHub Sponsors
Community !slack
Affiliation NumFOCUS Affiliated

Table of Contents

About The Project

Skforecast is a Python library for time series forecasting using machine learning models. It works with any regressor compatible with the scikit-learn API, including popular options like LightGBM, XGBoost, CatBoost, Keras, and many others.

Why use skforecast?

The fields of statistics and machine learning have developed many excellent regression algorithms that can be useful for forecasting, but applying them effectively to time series analysis can still be a challenge. To address this issue, the skforecast library provides a comprehensive set of tools for training, validation and prediction in a variety of scenarios commonly encountered when working with time series. The library is built using the widely used scikit-learn API, making it easy to integrate into existing workflows. With skforecast, users have access to a wide range of functionalities such as feature engineering, model selection, hyperparameter tuning and many others. This allows users to focus on the essential aspects of their projects and leave the intricacies of time series analysis to skforecast. In addition, skforecast is developed according to the following priorities:

  • Fast and robust prototyping. :zap:
  • Validation and backtesting methods to have a realistic assessment of model performance. :mag:
  • Models must be deployed in production. :hammer:
  • Models must be interpretable. :crystal_ball:

Share Your Thoughts with Us

Thank you for choosing skforecast! We value your suggestions, bug reports and recommendations as they help us identify areas for improvement and ensure that skforecast meets the needs of the community. Please consider sharing your experiences, reporting bugs, making suggestions or even contributing to the codebase on GitHub. Together, let's make time series forecasting more accessible and accurate for everyone.

Documentation

For detailed information on how to use and leverage the full potential of skforecast please refer to the comprehensive documentation available at:

https://skforecast.org :books:

Documentation
:book: Introduction to forecasting Basics of forecasting concepts and methodologies
:rocket: Quick start Get started quickly with skforecast
:hammer_and_wrench: User guides Detailed guides on skforecast features and functionalities
:mortar_board: Examples and tutorials Learn through practical examples and tutorials to master skforecast
:question: FAQ and tips Find answers and tips about forecasting
:books: API Reference Comprehensive reference for skforecast functions and classes
:black_nib: Authors Meet the authors and contributors of skforecast

Installation & Dependencies

To install the basic version of skforecast with its core dependencies, run:

pip install skforecast

If you want to learn more about the installation process, dependencies and optional features, please refer to the Installation Guide.

What is new in skforecast 0.13?

Visit the release notes to view all notable changes.

Forecasters

A Forecaster object in the skforecast library is a comprehensive container that provides essential functionality and methods for training a forecasting model and generating predictions for future points in time.

The skforecast library offers a variety of forecaster types, each tailored to specific requirements such as single or multiple time series, direct or recursive strategies, or custom predictors. Regardless of the specific forecaster type, all instances share the same API.

Forecaster Single series Multiple series Recursive strategy Direct strategy Probabilistic prediction Time series differentiation Exogenous features Custom features
ForecasterAutoreg :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
ForecasterAutoregCustom :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
ForecasterAutoregDirect :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
ForecasterMultiSeries :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
ForecasterMultiSeriesCustom :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
ForecasterMultiVariate :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
ForecasterRNN :heavy_check_mark: :heavy_check_mark:
ForecasterSarimax :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

Examples and tutorials

English

Español

How to contribute

Primarily, skforecast development consists of adding and creating new Forecasters, new validation strategies, or improving the performance of the current code. However, there are many other ways to contribute:

  • Submit a bug report or feature request on GitHub Issues.
  • Contribute a Jupyter notebook to our examples.
  • Write unit or integration tests for our project.
  • Answer questions on our issues, Stack Overflow, and elsewhere.
  • Translate our documentation into another language.
  • Write a blog post, tweet, or share our project with others.

For more information on how to contribute to skforecast, see our Contribution Guide.

Visit our authors section to meet all the contributors to skforecast.

Citation

If you use skforecast for a scientific publication, we would appreciate citations to the published software.

Zenodo

Amat Rodrigo, Joaquin, & Escobar Ortiz, Javier. (2024). skforecast (v0.13.0). Zenodo. https://doi.org/10.5281/zenodo.8382788

APA:

Amat Rodrigo, J., & Escobar Ortiz, J. (2024). skforecast (Version 0.13.0) [Computer software]. https://doi.org/10.5281/zenodo.8382788

BibTeX:

@software{skforecast,
author = {Amat Rodrigo, Joaquin and Escobar Ortiz, Javier},
title = {skforecast},
version = {0.13.0},
month = {8},
year = {2024},
license = {BSD-3-Clause},
url = {https://skforecast.org/},
doi = {10.5281/zenodo.8382788}
}

View the citation file.

Donating

If you found skforecast useful, you can support us with a donation. Your contribution will help to continue developing and improving this project. Many thanks!


paypal

License

BSD-3-Clause License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skforecast-0.13.0.tar.gz (527.3 kB view details)

Uploaded Source

Built Distribution

skforecast-0.13.0-py3-none-any.whl (670.5 kB view details)

Uploaded Python 3

File details

Details for the file skforecast-0.13.0.tar.gz.

File metadata

  • Download URL: skforecast-0.13.0.tar.gz
  • Upload date:
  • Size: 527.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for skforecast-0.13.0.tar.gz
Algorithm Hash digest
SHA256 c0e7a02385c7e182c37104c07c8433d77f74baea2ad1efd853c3d576eb773509
MD5 307e64ca46d11bcf138052b305a68f41
BLAKE2b-256 1beff1cff83d8702ccdaa647b20b08191375cb0ba7befd7d4f644e0febd6f287

See more details on using hashes here.

File details

Details for the file skforecast-0.13.0-py3-none-any.whl.

File metadata

  • Download URL: skforecast-0.13.0-py3-none-any.whl
  • Upload date:
  • Size: 670.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for skforecast-0.13.0-py3-none-any.whl
Algorithm Hash digest
SHA256 98764e4f543ad04a761c565d6a004381ac939f1014e5d837ab52a7708a00fc0e
MD5 baa0105142e7d22a3d36eef1e70b5bf6
BLAKE2b-256 d8b7ee8344aa230a60b766d6dc8afa16535af4daf197d6e4912951d34fc2116e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page