Forecasting time series with scikitlearn regressors
Project description
skforecast
Time series forecasting with scikit-learn regressors.
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM, XGBoost, Ranger...).
Documentation: https://joaquinamatrodrigo.github.io/skforecast/
Version 0.4 has undergone a huge code refactoring. Main changes are related to input-output formats (only pandas series and dataframes are allowed although internally numpy arrays are used for performance) and model validation methods (unified into backtesting with and without refit). Changelog
Table of contents
Installation
pip install skforecast
Specific version:
pip install skforecast==0.3
Latest (unstable):
pip install git+https://github.com/JoaquinAmatRodrigo/skforecast#master
The most common error when importing the library is:
'cannot import name 'mean_absolute_percentage_error' from 'sklearn.metrics'
.
This is because the scikit-learn installation is lower than 0.24. Try to upgrade scikit-learn with
pip3 install -U scikit-learn
Dependencies
- python>=3.7.1
- numpy>=1.20.1
- pandas>=1.2.2
- tqdm>=4.57.0
- scikit-learn>=1.0.1
- statsmodels>=0.12.2
Features
- Create recursive autoregressive forecasters from any scikit-learn regressor
- Create multi-output autoregressive forecasters from any scikit-learn regressor
- Grid search to find optimal hyperparameters
- Grid search to find optimal lags (predictors)
- Include exogenous variables as predictors
- Include custom predictors (rolling mean, rolling variance ...)
- Backtesting
- Prediction interval estimated by bootstrapping
- Get predictor importance
Introduction
A time series is a sequence of data arranged chronologically, in principle, equally spaced in time. Time series forecasting is the use of a model to predict future values based on previously observed values, with the option of also including other external variables.
When working with time series, it is seldom needed to predict only the next element in the series (t+1). Instead, the most common goal is to predict a whole future interval (t+1, ..., t+n) or a far point in time (t+n). There are several strategies that allow generating this type of multiple predictions.
Recursive multi-step forecasting
Since the value of t(n) is required to predict the point t(n-1), and t(n-1) is unknown, it is necessary to make recursive predictions in which, each new prediction, is based on the previous one. This process is known as recursive forecasting or recursive multi-step forecasting.
The main challenge when using scikit-learn models for recursive multi-step forecasting is transforming the time series in an matrix where, each value of the series, is related to the time window (lags) that precedes it. This forecasting strategy can be easily generated with the classes ForecasterAutoreg
and ForecasterAutoregCustom
.
Direct multi-step forecasting
This strategy consists of training a different model for each step. For example, to predict the next 5 values of a time series, 5 different models are trainded, one for each step. As a result, the predictions are independent of each other. This forecasting strategy can be easily generated with the ForecasterAutoregMultiOutput
class (changed in version 0.1.9).
Multiple output forecasting
Certain models are capable of simultaneously predicting several values of a sequence (one-shot), for example, LSTM neural networks. This strategy is not implemented in skforecast.
Getting started
Autoregressive forecaster
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test = data[-steps:]
# Plot
# ==============================================================================
fig, ax = plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
ax.legend()
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = RandomForestRegressor(random_state=123),
lags = 15
)
forecaster.fit(y=data_train)
forecaster
=================
ForecasterAutoreg
=================
Regressor: RandomForestRegressor(random_state=123)
Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
Window size: 15
Included exogenous: False
Type of exogenous variable: None
Exogenous variables names: None
Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')]
Training index type: DatetimeIndex
Training index frequency: MS
Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False}
Creation date: 2022-01-02 16:50:21
Last fit date: 2022-01-02 16:50:21
Skforecast version: 0.4.2
# Predict
# ==============================================================================
predictions = forecaster.predict(steps=36)
predictions.head(3)
2005-07-01 0.921840 2005-08-01 0.954921 2005-09-01 1.101716 Freq: MS, Name: pred, dtype: float64
# Plot predictions
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend()
# Prediction error
# ==============================================================================
error_mse = mean_squared_error(
y_true = data_test,
y_pred = predictions
)
print(f"Test error (mse): {error_mse}")
Test error (mse): 0.00429855684785846
# Feature importance
# ==============================================================================
forecaster.get_feature_importance()
| feature | importance |
|-----------|--------------|
| lag_1 | 0.0123397 |
| lag_2 | 0.0851603 |
| lag_3 | 0.0134071 |
| lag_4 | 0.00437446 |
| lag_5 | 0.00318805 |
| lag_6 | 0.00343593 |
| lag_7 | 0.00313612 |
| lag_8 | 0.00714094 |
| lag_9 | 0.00783053 |
| lag_10 | 0.0127507 |
| lag_11 | 0.00901919 |
| lag_12 | 0.807098 |
| lag_13 | 0.00481128 |
| lag_14 | 0.0163282 |
| lag_15 | 0.0099792 |
Autoregressive forecaster with exogenous predictors
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o_exog.csv')
data = pd.read_csv(url, sep=',', header=0, names=['datetime', 'y', 'exog_1', 'exog_2'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data.sort_index()
# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data.plot(ax=ax);
# Split train-test
# ==============================================================================
steps = 36
data_train = data.iloc[:-steps, :]
data_test = data.iloc[-steps:, :]
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = RandomForestRegressor(random_state=123),
lags = 15
)
forecaster.fit(
y = data_train['y'],
exog = data_train[['exog_1', 'exog_2']]
)
forecaster
=================
ForecasterAutoreg
=================
Regressor: RandomForestRegressor(random_state=123)
Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
Window size: 15
Included exogenous: True
Type of exogenous variable: <class 'pandas.core.frame.DataFrame'>
Exogenous variables names: ['exog_1', 'exog_2']
Training range: [Timestamp('1992-04-01 00:00:00'), Timestamp('2005-06-01 00:00:00')]
Training index type: DatetimeIndex
Training index frequency: MS
Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False}
Creation date: 2022-01-02 16:51:34
Last fit date: 2022-01-02 16:51:34
Skforecast version: 0.4.2
# Feature importance
# ==============================================================================
forecaster.get_feature_importance()
| feature | importance |
|-----------|--------------|
| lag_1 | 0.0133541 |
| lag_2 | 0.0611202 |
| lag_3 | 0.00908617 |
| lag_4 | 0.00272094 |
| lag_5 | 0.00247847 |
| lag_6 | 0.00315493 |
| lag_7 | 0.00217887 |
| lag_8 | 0.00815443 |
| lag_9 | 0.0103189 |
| lag_10 | 0.0205869 |
| lag_11 | 0.00703555 |
| lag_12 | 0.773389 |
| lag_13 | 0.00458297 |
| lag_14 | 0.0181272 |
| lag_15 | 0.00873237 |
| exog_1 | 0.0103638 |
| exog_2 | 0.0446156 |
Autoregressive forecaster with custom predictors
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoregCustom import ForecasterAutoregCustom
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test = data[-steps:]
# Custom function to create predictors
# ==============================================================================
def create_predictors(y):
'''
Create first 10 lags of a time series.
Calculate moving average with window 20.
'''
lags = y[-1:-11:-1]
mean = np.mean(y[-20:])
predictors = np.hstack([lags, mean])
return predictors
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoregCustom(
regressor = RandomForestRegressor(random_state=123),
fun_predictors = create_predictors,
window_size = 20
)
forecaster.fit(y=data_train)
forecaster
=======================
ForecasterAutoregCustom
=======================
Regressor: RandomForestRegressor(random_state=123)
Predictors created with function: create_predictors
Window size: 20
Included exogenous: False
Type of exogenous variable: None
Exogenous variables names: None
Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')]
Training index type: DatetimeIndex
Training index frequency: MS
Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False}
Creation date: 2022-01-02 16:52:12
Last fit date: 2022-01-02 16:52:12
Skforecast version: 0.4.2
# Predict
# ==============================================================================
predictions = forecaster.predict(steps=36)
predictions.head(3)
2005-07-01 0.926598 2005-08-01 0.948202 2005-09-01 1.020947 Freq: MS, Name: pred, dtype: float64
# Feature importance
# ==============================================================================
forecaster.get_feature_importance()
| feature | importance |
|---------------------|--------------|
| custom_predictor_0 | 0.53972 |
| custom_predictor_1 | 0.119097 |
| custom_predictor_2 | 0.0464036 |
| custom_predictor_3 | 0.0241653 |
| custom_predictor_4 | 0.0305667 |
| custom_predictor_5 | 0.0151391 |
| custom_predictor_6 | 0.0428832 |
| custom_predictor_7 | 0.012742 |
| custom_predictor_8 | 0.018938 |
| custom_predictor_9 | 0.108639 |
| custom_predictor_10 | 0.0417066 |
Prediction intervals
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test = data[-steps:]
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = make_pipeline(StandardScaler(), Ridge()),
lags = 15
)
forecaster.fit(y=data_train)
forecaster
=================
ForecasterAutoreg
=================
Regressor: Pipeline(steps=[('standardscaler', StandardScaler()), ('ridge', Ridge())])
Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
Window size: 15
Included exogenous: False
Type of exogenous variable: None
Exogenous variables names: None
Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')]
Training index type: DatetimeIndex
Training index frequency: MS
Regressor parameters: {'standardscaler__copy': True, 'standardscaler__with_mean': True, 'standardscaler__with_std': True, 'ridge__alpha': 1.0, 'ridge__copy_X': True, 'ridge__fit_intercept': True, 'ridge__max_iter': None, 'ridge__normalize': 'deprecated', 'ridge__positive': False, 'ridge__random_state': None, 'ridge__solver': 'auto', 'ridge__tol': 0.001}
Creation date: 2022-01-02 16:53:00
Last fit date: 2022-01-02 16:53:00
Skforecast version: 0.4.2
# Prediction intervals
# ==============================================================================
predictions = forecaster.predict_interval(
steps = steps,
interval = [5, 95],
n_boot = 500
)
fig, ax=plt.subplots(figsize=(9, 4))
data_test.plot(ax=ax, label='test')
predictions['pred'].plot(ax=ax, label='predictions')
ax.fill_between(
predictions.index,
predictions['lower_bound'],
predictions['upper_bound'],
alpha=0.5
)
ax.legend()
Backtesting
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.model_selection import backtesting_forecaster
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-backtest
# ==============================================================================
n_backtest = 36*3 # Last 9 years are used for backtest
data_train = data[:-n_backtest]
data_backtest = data[-n_backtest:]
# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_backtest.plot(ax=ax, label='backtest')
ax.legend()
# Backtest forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = RandomForestRegressor(random_state=123),
lags = 15
)
metric, predictions_backtest = backtesting_forecaster(
forecaster = forecaster,
y = data,
initial_train_size = len(data_train),
steps = 12,
metric = 'mean_squared_error',
refit = True,
verbose = True
)
Information of backtesting process
----------------------------------
Number of observations used for initial training: 96
Number of observations used for backtesting: 108
Number of folds: 9
Number of steps per fold: 12
Data partition in fold: 0
Training: 1991-07-01 00:00:00 -- 1999-06-01 00:00:00
Validation: 1999-07-01 00:00:00 -- 2000-06-01 00:00:00
Data partition in fold: 1
Training: 1991-07-01 00:00:00 -- 2000-06-01 00:00:00
Validation: 2000-07-01 00:00:00 -- 2001-06-01 00:00:00
Data partition in fold: 2
Training: 1991-07-01 00:00:00 -- 2001-06-01 00:00:00
Validation: 2001-07-01 00:00:00 -- 2002-06-01 00:00:00
Data partition in fold: 3
Training: 1991-07-01 00:00:00 -- 2002-06-01 00:00:00
Validation: 2002-07-01 00:00:00 -- 2003-06-01 00:00:00
Data partition in fold: 4
Training: 1991-07-01 00:00:00 -- 2003-06-01 00:00:00
Validation: 2003-07-01 00:00:00 -- 2004-06-01 00:00:00
Data partition in fold: 5
Training: 1991-07-01 00:00:00 -- 2004-06-01 00:00:00
Validation: 2004-07-01 00:00:00 -- 2005-06-01 00:00:00
Data partition in fold: 6
Training: 1991-07-01 00:00:00 -- 2005-06-01 00:00:00
Validation: 2005-07-01 00:00:00 -- 2006-06-01 00:00:00
Data partition in fold: 7
Training: 1991-07-01 00:00:00 -- 2006-06-01 00:00:00
Validation: 2006-07-01 00:00:00 -- 2007-06-01 00:00:00
Data partition in fold: 8
Training: 1991-07-01 00:00:00 -- 2007-06-01 00:00:00
Validation: 2007-07-01 00:00:00 -- 2008-06-01 00:00:00
fig, ax = plt.subplots(figsize=(9, 4))
data_backtest.plot(ax=ax, label='backtest')
predictions_backtest.plot(ax=ax, label='predictions')
ax.legend()
Model tuning
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.model_selection import grid_search_forecaster
from sklearn.ensemble import RandomForestRegressor
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-test
# ==============================================================================
steps = 24
data_train = data.loc[: '2001-01-01']
data_val = data.loc['2001-01-01' : '2006-01-01']
data_test = data.loc['2006-01-01':]
# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_val.plot(ax=ax, label='validation')
data_test.plot(ax=ax, label='test')
ax.legend()
# Grid search hyperparameters and lags
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = RandomForestRegressor(random_state=123),
lags = 12 # Placeholder, the value will be overwritten
)
# Regressor hyperparameters
param_grid = {'n_estimators': [50, 100],
'max_depth': [5, 10, 15]}
# Lags used as predictors
lags_grid = [3, 10, [1, 2, 3, 20]]
results_grid = grid_search_forecaster(
forecaster = forecaster,
y = data.loc[:'2006-01-01'],
param_grid = param_grid,
lags_grid = lags_grid,
steps = 12,
refit = True,
metric = 'mean_squared_error',
initial_train_size = len(data_train),
return_best = True,
verbose = False
)
results_grid
Number of models compared: 18
loop lags_grid: 0%| | 0/3 [00:00<?, ?it/s]
loop param_grid: 0%| | 0/6 [00:00<?, ?it/s]
loop param_grid: 17%|██████▎ | 1/6 [00:00<00:02, 1.92it/s]
loop param_grid: 33%|████████████▋ | 2/6 [00:01<00:03, 1.18it/s]
loop param_grid: 50%|███████████████████ | 3/6 [00:02<00:02, 1.33it/s]
loop param_grid: 67%|█████████████████████████▎ | 4/6 [00:03<00:01, 1.15it/s]
loop param_grid: 83%|███████████████████████████████▋ | 5/6 [00:03<00:00, 1.33it/s]
loop param_grid: 100%|██████████████████████████████████████| 6/6 [00:04<00:00, 1.22it/s]
loop lags_grid: 33%|█████████████ | 1/3 [00:04<00:09, 4.79s/it]
loop param_grid: 0%| | 0/6 [00:00<?, ?it/s]
loop param_grid: 17%|██████▎ | 1/6 [00:00<00:02, 1.96it/s]
loop param_grid: 33%|████████████▋ | 2/6 [00:01<00:03, 1.23it/s]
loop param_grid: 50%|███████████████████ | 3/6 [00:02<00:02, 1.17it/s]
loop param_grid: 67%|█████████████████████████▎ | 4/6 [00:03<00:02, 1.07s/it]
loop param_grid: 83%|███████████████████████████████▋ | 5/6 [00:04<00:00, 1.10it/s]
loop param_grid: 100%|██████████████████████████████████████| 6/6 [00:05<00:00, 1.00s/it]
loop lags_grid: 67%|██████████████████████████ | 2/3 [00:10<00:05, 5.30s/it]
loop param_grid: 0%| | 0/6 [00:00<?, ?it/s]
loop param_grid: 17%|██████▎ | 1/6 [00:00<00:02, 2.07it/s]
loop param_grid: 33%|████████████▋ | 2/6 [00:01<00:02, 1.38it/s]
loop param_grid: 50%|███████████████████ | 3/6 [00:01<00:01, 1.55it/s]
loop param_grid: 67%|█████████████████████████▎ | 4/6 [00:03<00:01, 1.21it/s]
loop param_grid: 83%|███████████████████████████████▋ | 5/6 [00:03<00:00, 1.34it/s]
loop param_grid: 100%|██████████████████████████████████████| 6/6 [00:05<00:00, 1.01s/it]
loop lags_grid: 100%|███████████████████████████████████████| 3/3 [00:15<00:00, 5.20s/it]
Refitting `forecaster` using the best found lags and parameters and the whole data set:
Lags: [ 1 2 3 4 5 6 7 8 9 10]
Parameters: {'max_depth': 5, 'n_estimators': 50}
Backtesting metric: 0.03344857370906804
| lags | params | metric | max_depth | n_estimators |
|---------------------------------|----------------------------------------|-----------|-------------|----------------|
| [ 1 2 3 4 5 6 7 8 9 10] | {'max_depth': 5, 'n_estimators': 50} | 0.0334486 | 5 | 50 |
| [ 1 2 3 4 5 6 7 8 9 10] | {'max_depth': 10, 'n_estimators': 50} | 0.0392212 | 10 | 50 |
| [ 1 2 3 4 5 6 7 8 9 10] | {'max_depth': 15, 'n_estimators': 100} | 0.0392658 | 15 | 100 |
| [ 1 2 3 4 5 6 7 8 9 10] | {'max_depth': 5, 'n_estimators': 100} | 0.0395258 | 5 | 100 |
| [ 1 2 3 4 5 6 7 8 9 10] | {'max_depth': 10, 'n_estimators': 100} | 0.0402408 | 10 | 100 |
| [ 1 2 3 4 5 6 7 8 9 10] | {'max_depth': 15, 'n_estimators': 50} | 0.0407645 | 15 | 50 |
| [ 1 2 3 20] | {'max_depth': 15, 'n_estimators': 100} | 0.0439092 | 15 | 100 |
| [ 1 2 3 20] | {'max_depth': 5, 'n_estimators': 100} | 0.0449923 | 5 | 100 |
| [ 1 2 3 20] | {'max_depth': 5, 'n_estimators': 50} | 0.0462237 | 5 | 50 |
| [1 2 3] | {'max_depth': 5, 'n_estimators': 50} | 0.0486662 | 5 | 50 |
| [ 1 2 3 20] | {'max_depth': 10, 'n_estimators': 100} | 0.0489914 | 10 | 100 |
| [ 1 2 3 20] | {'max_depth': 10, 'n_estimators': 50} | 0.0501932 | 10 | 50 |
| [1 2 3] | {'max_depth': 15, 'n_estimators': 100} | 0.0505563 | 15 | 100 |
| [ 1 2 3 20] | {'max_depth': 15, 'n_estimators': 50} | 0.0512172 | 15 | 50 |
| [1 2 3] | {'max_depth': 5, 'n_estimators': 100} | 0.0531229 | 5 | 100 |
| [1 2 3] | {'max_depth': 15, 'n_estimators': 50} | 0.0602604 | 15 | 50 |
| [1 2 3] | {'max_depth': 10, 'n_estimators': 50} | 0.0609513 | 10 | 50 |
| [1 2 3] | {'max_depth': 10, 'n_estimators': 100} | 0.0673343 | 10 | 100 |
Examples and tutorials
English
-
Skforecast: time series forecasting with Python and Scikit-learn
-
Forecasting time series with gradient boosting: Skforecast, XGBoost, LightGBM y CatBoost
Español
-
Skforecast: forecasting series temporales con Python y Scikit-learn
-
Forecasting series temporales con gradient boosting: Skforecast, XGBoost, LightGBM y CatBoost
References
-
Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia
-
Time Series Analysis and Forecasting with ADAM Ivan Svetunkov
-
Python for Finance: Mastering Data-Driven Finance
Licence
joaquinAmatRodrigo/skforecast is licensed under the MIT License, a short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file skforecast-0.4.2.tar.gz
.
File metadata
- Download URL: skforecast-0.4.2.tar.gz
- Upload date:
- Size: 9.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3436058443aa6821d4c6d4aa0a956ddab43a863d8234ffb70ef299aac0f8ec08 |
|
MD5 | a31886939042833d5cacfb156bebd0d4 |
|
BLAKE2b-256 | 741657e1d15030e11a23e8059c3795f0292ad23f357de2ccf4d91b43b85e3aa6 |
File details
Details for the file skforecast-0.4.2-py2.py3-none-any.whl
.
File metadata
- Download URL: skforecast-0.4.2-py2.py3-none-any.whl
- Upload date:
- Size: 81.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e301339eb9a9d868921104846eb21365b237804154e1006180da40140f1f6826 |
|
MD5 | dc1f1b6408f8974c73afbc206520dd92 |
|
BLAKE2b-256 | 06c9b7193f7ce6131d13b473edb4b7aa18d4e986d55d7cab1da2b58777e8502c |