Skip to main content

example description

Project description

skgpytorch

Coverage Status

GPyTorch Models in Scikit-learn wrapper.

Example

import torch
from skgpytorch.models import ExactGPRegressor
from skgpytorch.metrics import mean_squared_error, negative_log_predictive_density
from gpytorch.kernels import RBFKernel, ScaleKernel

# Define a model
train_x = torch.rand(10, 1)
train_y = torch.rand(10)
test_x = torch.rand(10, 1)
test_y = torch.rand(10)

kernel = ScaleKernel(RBFKernel(ard_num_dims=train_x.shape[1]))
gp = ExactGPRegressor(train_x, train_y, kernel, random_state=0, device="cpu")

# Fit the model
gp.fit(n_iters=10, verbose=True, n_restarts=2, verbose_gap=2)

# Get the predictions
# f_mean, f_var = gp.predict(test_x)
# OR
pred_dist = gp.predict(test_x, dist_only=True)

# Calculate metrics
print("MSE:", mean_squared_error(pred_dist, test_x, test_y))
print("NLPD:", negative_log_predictive_density(pred_dist, test_x, test_y))
Restart: 0, Iter: 0, Loss: 1.0135, Best Loss: inf
Restart: 0, Iter: 2, Loss: 0.9371, Best Loss: inf
Restart: 0, Iter: 4, Loss: 0.8644, Best Loss: inf
Restart: 0, Iter: 6, Loss: 0.7978, Best Loss: inf
Restart: 0, Iter: 8, Loss: 0.7382, Best Loss: inf
Restart: 1, Iter: 0, Loss: 0.9626, Best Loss: 0.6819
Restart: 1, Iter: 2, Loss: 0.8948, Best Loss: 0.6819
Restart: 1, Iter: 4, Loss: 0.8239, Best Loss: 0.6819
Restart: 1, Iter: 6, Loss: 0.7537, Best Loss: 0.6819
Restart: 1, Iter: 8, Loss: 0.6880, Best Loss: 0.6819
MSE: 0.08736331760883331
NLPD: 0.49492106437683103

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skgpytorch-0.1.5.tar.gz (268.2 kB view details)

Uploaded Source

File details

Details for the file skgpytorch-0.1.5.tar.gz.

File metadata

  • Download URL: skgpytorch-0.1.5.tar.gz
  • Upload date:
  • Size: 268.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for skgpytorch-0.1.5.tar.gz
Algorithm Hash digest
SHA256 185baa2a79a101311dd10cba4edd415d3f4af12a1fdf623c87565ed1d14f82c9
MD5 c962387750ddc83b39d576edb463fa41
BLAKE2b-256 5c8ec1c153f5f969b7619ff4b336eeb94b08258d7ff5bfe5b8dcb7f5973a1ff5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page