Skip to main content

example description

Project description

skgpytorch

Coverage Status

GPyTorch Models in Scikit-learn wrapper.

Example

import torch
from skgpytorch.models import ExactGPRegressor
from skgpytorch.metrics import mean_squared_error, negative_log_predictive_density
from gpytorch.kernels import RBFKernel, ScaleKernel

# Define a model
train_x = torch.rand(10, 1)
train_y = torch.rand(10)
test_x = torch.rand(10, 1)
test_y = torch.rand(10)

kernel = ScaleKernel(RBFKernel(ard_num_dims=train_x.shape[1]))
gp = ExactGPRegressor(train_x, train_y, kernel)

# Fit the model (This supports batch training of GP models as well)
gp.fit(n_epochs=2, verbose=True, n_restarts=1, verbose_gap=2, batch_size=10, lr=0.1, random_state=0)

# Get the predictions
pred_dist = gp.predict(test_x)

# Access properties of predictive distribution
pred_mean = pred_dist.mean # Mean
pred_var = pred_dist.variance # Variance
pred_stddev = pred_dist.stddev # Standard deviation
lower, upper = pred_dist.confidence_region() # 95% confidence region

# Calculate metrics (Soon this will be implemented in gpytorch itself)
print("MSE:", mean_squared_error(pred_dist, test_y))
print("NLPD:", negative_log_predictive_density(pred_dist, test_y))
Restart: 0, Iter: 0, Loss: 1.0135, Best Loss: inf
Restart: 0, Iter: 2, Loss: 0.9371, Best Loss: inf
Restart: 0, Iter: 4, Loss: 0.8644, Best Loss: inf
Restart: 0, Iter: 6, Loss: 0.7978, Best Loss: inf
Restart: 0, Iter: 8, Loss: 0.7382, Best Loss: inf
Restart: 1, Iter: 0, Loss: 0.9626, Best Loss: 0.6819
Restart: 1, Iter: 2, Loss: 0.8948, Best Loss: 0.6819
Restart: 1, Iter: 4, Loss: 0.8239, Best Loss: 0.6819
Restart: 1, Iter: 6, Loss: 0.7537, Best Loss: 0.6819
Restart: 1, Iter: 8, Loss: 0.6880, Best Loss: 0.6819
MSE: 0.08736331760883331
NLPD: 0.49492106437683103

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skgpytorch-0.1.6.tar.gz (268.5 kB view details)

Uploaded Source

File details

Details for the file skgpytorch-0.1.6.tar.gz.

File metadata

  • Download URL: skgpytorch-0.1.6.tar.gz
  • Upload date:
  • Size: 268.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for skgpytorch-0.1.6.tar.gz
Algorithm Hash digest
SHA256 1cc48191327c280f33b8e7478c48cfd9a2d8c96262251a6c309a9d9107a39660
MD5 ce4a3a62e56b4c4835dd7b575c8c926e
BLAKE2b-256 e8d05d73a5c98055240d4c660bcf9784c3f38242b1665fab9a055d424baaac9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page