Skip to main content

Pluggable skills for AI agents

Project description


SkillPacks

Pluggable skillsets for AI agents
Explore the docs »

View Demo · Report Bug · Request Feature

Skillpacks provide a means of fine tuning agents on tools, and the ability to hotswap learned skills at inference time.

Teach a model how to use a website | code base | API | database | application | ...   then swap in that learned layer the moment you need it.

Install

pip install skillpacks

Quick Start

Create an episode to record agent events

from skillpacks import Episode

episode = Episode(remote="https://foo.bar")

Take an action

from mllm import Router, RoleThread
from skillpacks import V1Action
from agentdesk import Desktop

router = Router.from_env()
desktop = Desktop.local()

thread = RoleThread()
msg = f"""
I need to open Google to search, your available action are {desktop.json_schema()}
please return your selection as {V1Action.model_json_schema()}
"""
thread.post(role="user", msg=msg)

response = router.chat(thread, expect=V1Action)
v1action = response.parsed

action = desktop.find_action(name=v1action.name)
result = desktop.use(action, **v1action.parameters)

Record the action in the episode

event = episode.record(
    prompt=response.prompt,
    action=v1action,
    tool=desktop.ref(),
    result=result,
)

Mark actions as approved

# approve one
episode.approve_one(event.id)

# approve the event and all actions prior to it
episode.approve_prior(event.id)

# approve all
episode.approve_all()

Get all approved actions in an episode

episode = Episode.find(id="123")[0]
actions = episode.approved_actions()

Get all approved actions in a namespace

from skillpacks import ActionEvent

actions = ActionEvent.find(namespace="foo", approved=True)

Get all approved actions for a tool

actions = ActionEvent.find(tool=desktop.ref(), approved=True)

Tune a model on the actions (In progress)

from skillpacks.model import InternVLChat
from skillpacks.runtime import KubernetesRuntime

runtime = KubernetesRuntime()
model = InternVLChat(runtime=runtime)

result = model.train(actions=actions, follow=True, publish=True)

Integrations

Skillpacks is integrated with:

  • MLLM A prompt management, routing, and schema validation library for multimodal LLMs
  • Taskara A task management library for AI agents
  • Surfkit A platform for AI agents
  • Threadmem A thread management library for AI agents

Community

Come join us on Discord.

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=skills
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skillpacks-0.1.38.tar.gz (25.5 kB view details)

Uploaded Source

Built Distribution

skillpacks-0.1.38-py3-none-any.whl (34.3 kB view details)

Uploaded Python 3

File details

Details for the file skillpacks-0.1.38.tar.gz.

File metadata

  • Download URL: skillpacks-0.1.38.tar.gz
  • Upload date:
  • Size: 25.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.4.0

File hashes

Hashes for skillpacks-0.1.38.tar.gz
Algorithm Hash digest
SHA256 8b5dc4cf79c737accf739ddbdbd78d2c9d4c6fc67b3bd8f5684f249a598b58c7
MD5 727346d5667fe48d20802d3252e01494
BLAKE2b-256 a4e73a4d8cf851c6b90297637e2f9f956363c65fb8a58782138d0bcb5a1a239a

See more details on using hashes here.

File details

Details for the file skillpacks-0.1.38-py3-none-any.whl.

File metadata

  • Download URL: skillpacks-0.1.38-py3-none-any.whl
  • Upload date:
  • Size: 34.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.4.0

File hashes

Hashes for skillpacks-0.1.38-py3-none-any.whl
Algorithm Hash digest
SHA256 9b8e406cbcd862734befbbe5464ea449d80c7c5faeb066b394d6b26845e06fbc
MD5 0ccb5cefdacc2e91d418cbe82583ccaf
BLAKE2b-256 dd307832748ffd73cf04f119d10d2dfa245cbc998ebf8d6692fd553768f3d631

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page