Skip to main content

Pluggable skills for AI agents

Project description


SkillPacks

Pluggable skillsets for AI agents
Explore the docs »

View Demo · Report Bug · Request Feature

Skillpacks provide a means of fine tuning agents on tools, and the ability to hotswap learned skills at inference time.

Teach a model how to use a website | code base | API | database | application | ...   then swap in that learned layer the moment you need it.

Install

pip install skillpacks

Quick Start

Create an episode to record agent events

from skillpacks import Episode

episode = Episode(remote="https://foo.bar")

Take an action

from mllm import Router, RoleThread
from skillpacks import V1Action
from agentdesk import Desktop

router = Router.from_env()
desktop = Desktop.local()

thread = RoleThread()
msg = f"""
I need to open Google to search, your available action are {desktop.json_schema()}
please return your selection as {V1Action.model_json_schema()}
"""
thread.post(role="user", msg=msg)

response = router.chat(thread, expect=V1Action)
v1action = response.parsed

action = desktop.find_action(name=v1action.name)
result = desktop.use(action, **v1action.parameters)

Record the action in the episode

event = episode.record(
    prompt=response.prompt,
    action=v1action,
    tool=desktop.ref(),
    result=result,
)

Mark actions as approved

# approve one
episode.approve_one(event.id)

# approve the event and all actions prior to it
episode.approve_prior(event.id)

# approve all
episode.approve_all()

Get all approved actions in an episode

episode = Episode.find(id="123")[0]
actions = episode.approved_actions()

Get all approved actions in a namespace

from skillpacks import ActionEvent

actions = ActionEvent.find(namespace="foo", approved=True)

Get all approved actions for a tool

actions = ActionEvent.find(tool=desktop.ref(), approved=True)

Tune a model on the actions (In progress)

from skillpacks.model import InternVLChat
from skillpacks.runtime import KubernetesRuntime

runtime = KubernetesRuntime()
model = InternVLChat(runtime=runtime)

result = model.train(actions=actions, follow=True, publish=True)

Integrations

Skillpacks is integrated with:

  • MLLM A prompt management, routing, and schema validation library for multimodal LLMs
  • Taskara A task management library for AI agents
  • Surfkit A platform for AI agents
  • Threadmem A thread management library for AI agents

Community

Come join us on Discord.

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=skills
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skillpacks-0.1.42.tar.gz (28.6 kB view details)

Uploaded Source

Built Distribution

skillpacks-0.1.42-py3-none-any.whl (37.7 kB view details)

Uploaded Python 3

File details

Details for the file skillpacks-0.1.42.tar.gz.

File metadata

  • Download URL: skillpacks-0.1.42.tar.gz
  • Upload date:
  • Size: 28.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.4.0

File hashes

Hashes for skillpacks-0.1.42.tar.gz
Algorithm Hash digest
SHA256 97ad5d737461c245dd633b73994cc4d8eeeabc1e4d6724fad95b92e7f646d223
MD5 68c8f337a1d2f4b5ca9a2b06485272f0
BLAKE2b-256 5adbfd6e25df04772814be4f87406c190cf68cf7412d625f55915547ec0fc5c7

See more details on using hashes here.

File details

Details for the file skillpacks-0.1.42-py3-none-any.whl.

File metadata

  • Download URL: skillpacks-0.1.42-py3-none-any.whl
  • Upload date:
  • Size: 37.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.4.0

File hashes

Hashes for skillpacks-0.1.42-py3-none-any.whl
Algorithm Hash digest
SHA256 8dcb44cb3e97d71e7c5388651c2043bc4e68f3b9c42efeaafc99d6c6cce2afa4
MD5 9dd430f5de859b71db4ac7323afe7936
BLAKE2b-256 a15f2b535a67dc87dd7ceb90468c3f8f5e5db3619a6a60a9a8ac867b84f69b81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page